Contextual speed detection for python

Overview

Speed Prediction using Optical Flow and 2D CNN

About the challenge:

Comma.AI Speed Challenge This challenge was developed by Comma.AI to predict the speed of a car from a video.

Pipeline

Model

Tensorflow Version: 2.2.0

Steps for implementing speed estimation:

  1. Save the images from the train.mp4 and test.mp4 video using DatasetConverter.py.
  2. Convert the images from the videos, computer dense optical flow on the image sequence and save optical flow images using VideoToOpticalFlowImage.py.
  3. Train the network below on optical flow images and save the best performing model using custom callback.
  4. Use the saved model on the testing dataset using UseModel.py.

Optical Flow

Optical flow is computed on two adjacent image frames in a video, converted it to grayscal and applying cv2.calcOpticalFlowFarneback() which outputs two matrices of same shape as compared to the input shape. Each pixel of the output images denotes the change in its position and speed respectively with respect to the previous image frame. For visualization and training, the output images are combined into single HSV color channel based image.

Data Augmentation

Every single images is flipped horizontally having the target value same as the images from which it is derived. This data augmentation played significant role in reducing validation loss.

Model

The following model is a 2D CNN based model made to be used on optical flow images. As compared to a 3D CNN based model trained on images from video, using optical flow with 2D CNN is faster to train and has lower MSE loss.

Training:

Trained the 2D CNN for 150 epochs to get a validation MSE loss of 0.18 and training MSE loss of 0.05

Output:

This gif below has the prediction vs ground truth for the images on which the model is trained:

Train Prediction

This gif is the prediction on the test images:

Test Prediction

Learning:

  1. Image augmentation significantly improves the speed estimation of the model
  2. Writing custom data generators for reading batches of images and ground truth
  3. 2D CNN with optical flow performs better than 3D CNN in terms of training time and accuracy

Reference:

  1. speed-estimation-of-car-with-optical-flow
  2. speed-prediction-challenge
Owner
Mahimana Bhatt
Solving problems through code
Mahimana Bhatt
This project is basically to draw lines with your hand, using python, opencv, mediapipe.

Paint Opencv 📷 This project is basically to draw lines with your hand, using python, opencv, mediapipe. Screenshoots 📱 Tools ⚙️ Python Opencv Mediap

Williams Ismael Bobadilla Torres 3 Nov 17, 2021
Learning Camera Localization via Dense Scene Matching, CVPR2021

This repository contains code of our CVPR 2021 paper - "Learning Camera Localization via Dense Scene Matching" by Shitao Tang, Chengzhou Tang, Rui Hua

tangshitao 65 Dec 01, 2022
The open source extract transaction infomation by using OCR.

Transaction OCR Mã nguồn trích xuất thông tin transaction từ file scaned pdf, ở đây tôi lựa chọn tài liệu sao kê công khai của Thuy Tien. Mã nguồn có

Nguyen Xuan Hung 18 Jun 02, 2022
This Repository contain Opencv Projects in python

Python-Opencv OpenCV OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was

Yash Sakre 2 Nov 06, 2021
Brief idea about our project is mentioned in project presentation file.

Brief idea about our project is mentioned in project presentation file. You just have to run attendance.py file in your suitable IDE but we prefer jupyter lab.

Dhruv ;-) 3 Mar 20, 2022
scene-linear test images

Scene-Referred Image Collection A collection of OpenEXR Scene-Referred images, encoded as max 2048px width, DWAA 80 compression. All exrs are encoded

Gralk Klorggson 7 Aug 25, 2022
Extract tables from scanned image PDFs using Optical Character Recognition.

ocr-table This project aims to extract tables from scanned image PDFs using Optical Character Recognition. Install Requirements Tesseract OCR sudo apt

Abhijeet Singh 209 Dec 06, 2022
SRA's seminar on Introduction to Computer Vision Fundamentals

Introduction to Computer Vision This repository includes basics to : Python Numpy: A python library Git Computer Vision. The aim of this repository is

Society of Robotics and Automation 147 Dec 04, 2022
A python programusing Tkinter graphics library to randomize questions and answers contained in text files

RaffleOfQuestions Um programa simples em python, utilizando a biblioteca gráfica Tkinter para randomizar perguntas e respostas contidas em arquivos de

Gabriel Ferreira Rodrigues 1 Dec 16, 2021
FOTS Pytorch Implementation

News!!! Recognition branch now is added into model. The whole project has beed optimized and refactored. ICDAR Dataset SynthText 800K Dataset detectio

Ning Lu 599 Dec 19, 2022
A little but useful tool to explore OCR data extracted with `pytesseract` and `opencv`

Screenshot OCR Tool Extracting data from screen time screenshots in iOS and Android. We are exploring 3 options: Simple OCR with no text position usin

Gabriele Marini 1 Dec 07, 2021
In this project we will be using the live feed coming from the webcam to create a virtual mouse with complete functionalities.

Virtual Mouse Using OpenCV In this project we will be using the live feed coming from the webcam to create a virtual mouse using hand tracking. Projec

Hassan Shahzad 8 Dec 20, 2022
Code for CVPR 2022 paper "SoftGroup for Instance Segmentation on 3D Point Clouds"

SoftGroup We provide code for reproducing results of the paper SoftGroup for 3D Instance Segmentation on Point Clouds (CVPR 2022) Author: Thang Vu, Ko

Thang Vu 231 Dec 27, 2022
ocroseg - This is a deep learning model for page layout analysis / segmentation.

ocroseg This is a deep learning model for page layout analysis / segmentation. There are many different ways in which you can train and run it, but by

NVIDIA Research Projects 71 Dec 06, 2022
BoxToolBox is a simple python application built around the openCV library

BoxToolBox is a simple python application built around the openCV library. It is not a full featured application to guide you through the w

František Horínek 1 Nov 12, 2021
Isearch (OSINT) 🔎 Face recognition reverse image search on Instagram profile feed photos.

isearch is an OSINT tool on Instagram. Offers a face recognition reverse image search on Instagram profile feed photos.

Malek salem 20 Oct 25, 2022
MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition

MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition Python 2.7 Python 3.6 MORAN is a network with rectification mechanism for

Canjie Luo 595 Dec 27, 2022
CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering" official PyTorch implementation.

LED2-Net This is PyTorch implementation of our CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering". Y

Fu-En Wang 83 Jan 04, 2023
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
Framework for the Complete Gaze Tracking Pipeline

Framework for the Complete Gaze Tracking Pipeline The figure below shows a general representation of the camera-to-screen gaze tracking pipeline [1].

Pascal 20 Jan 06, 2023