1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge

Overview

SIIM-COVID19-Detection

Alt text

Source code of the 1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge.

1.INSTALLATION

  • Ubuntu 18.04.5 LTS
  • CUDA 10.2
  • Python 3.7.9
  • python packages are detailed separately in requirements.txt
$ conda create -n envs python=3.7.9
$ conda activate envs
$ conda install -c conda-forge gdcm
$ pip install -r requirements.txt
$ pip install git+https://github.com/ildoonet/pytorch-gradual-warmup-lr.git

2.DATASET

2.1 SIIM COVID 19 DATASET

  • download competition dataset at link then extract to ./dataset/siim-covid19-detection
$ cd src/prepare
$ python dicom2image_siim.py
$ python kfold_split.py
$ prepare_siim_annotation.py                        # effdet and yolo format
$ cp -r ../../dataset/siim-covid19-detection/images ../../dataset/lung_crop/.
$ python prepare_siim_lung_crop_annotation.py

2.2 EXTERNAL DATASET

  • download pneumothorax dataset at link then extract to ./dataset/external_dataset/pneumothorax/dicoms
  • download pneumonia dataset at link then extract to ./dataset/external_dataset/rsna-pneumonia-detection-challenge/dicoms
  • download vinbigdata dataset at link then extract to ./dataset/external_dataset/vinbigdata/dicoms
  • download chest14 dataset at link then extract to ./dataset/external_dataset/chest14/images
  • download chexpert high-resolution dataset at link or then extract to ./dataset/external_dataset/chexpert/train
  • download padchest dataset at link or then extract to ./dataset/external_dataset/padchest/images
    most of the images in bimcv and ricord overlap with siim covid trainset and testset. To avoid data-leak when training, I didn't use them. You can use script
$ cd src/prepare
$ python dicom2image_pneumothorax.py
$ python dicom2image_pneumonia.py
$ python prepare_pneumonia_annotation.py      # effdet and yolo format
$ python dicom2image_vinbigdata.py
$ python prepare_vinbigdata.py
$ python refine_data.py                       # remove unused file in chexpert + chest14 + padchest dataset
$ python resize_padchest_pneumothorax.py

dataset structure should be ./dataset/dataset_structure.txt

3.SOLUTION SUMMARY

Alt text

4.TRAIN MODEL

4.1 Classification

4.1.1 Multi head classification + segmentation

  • Stage1
$ cd src/classification_aux
$ bash train_chexpert_chest14.sh              #Pretrain backbone on chexpert + chest14
$ bash train_rsnapneu.sh                      #Pretrain rsna_pneumonia
$ bash train_siim.sh                          #Train siim covid19
  • Stage2: Generate soft-label for classification head and mask for segmentation head.
    Output: soft-label in ./pseudo_csv/[source].csv and public test masks in ./prediction_mask/public_test/masks
$ bash generate_pseudo_label.sh [checkpoints_dir]
  • Stage3: Train model on trainset + public testset, load checkpoint from previous round
$ bash train_pseudo.sh [previous_checkpoints_dir] [new_checkpoints_dir]

Rounds of pseudo labeling (stage2) and retraining (stage3) were repeated until the score on public LB didn't improve.

  • For final submission
$ bash generate_pseudo_label.sh checkpoints_v3
$ bash train_pseudo.sh checkpoints_v3 checkpoints_v4
  • For evaluation
$ CUDA_VISIBLE_DEVICES=0 python evaluate.py --cfg configs/xxx.yaml --num_tta xxx

[email protected] 4 classes: negative, typical, indeterminate, atypical

SeR152-Unet EB5-Deeplab EB6-Linknet EB7-Unet++ Ensemble
w/o TTA/8TTA 0.575/0.584 0.583/0.592 0.580/0.587 0.589/0.595 0.595/0.598

8TTA: (orig, center-crop 80%)x(None, hflip, vflip, hflip & vflip). In final submission, I use 4.1.2 lung detector instead of center-crop 80%

4.1.2 Lung Detector-YoloV5

I annotated the train data(6334 images) using LabelImg and built a lung localizer. I noticed that increasing input image size improves the modeling performance and lung detector helps the model to reduce background noise.

$ cd src/detection_lung_yolov5
$ cd weights && bash download_coco_weights.sh && cd ..
$ bash train.sh
Fold0 Fold1 Fold2 Fold3 Fold4 Average
[email protected]:0.95 0.921 0.931 0.926 0.923 0.922 0.9246
[email protected] 0.997 0.998 0.997 0.996 0.998 0.9972

4.2 Opacity Detection

Rounds of pseudo labeling (stage2) and retraining (stage3) were repeated until the score on public LB didn't improve.

4.2.1 YoloV5x6 768

  • Stage1:
$ cd src/detection_yolov5
$ cd weights && bash download_coco_weights.sh && cd ..
$ bash train_rsnapneu.sh          #pretrain with rsna_pneumonia
$ bash train_siim.sh              #train with siim covid19 dataset, load rsna_pneumonia checkpoint
  • Stage2: Generate pseudo label (boxes)
$ bash generate_pseudo_label.sh

Jump to step 4.2.4 Ensembling + Pseudo labeling

  • Stage3:
$ bash warmup_ext_dataset.sh      #train with pseudo labeling (public-test, padchest, pneumothorax, vin) + rsna_pneumonia
$ bash train_final.sh             #train siim covid19 boxes, load warmup checkpoint

4.2.2 EfficientDet D7 768

  • Stage1:
$ cd src/detection_efffdet
$ bash train_rsnapneu.sh          #pretrain with rsna_pneumonia
$ bash train_siim.sh              #train with siim covid19 dataset, load rsna_pneumonia checkpoint
  • Stage2: Generate pseudo label (boxes)
$ bash generate_pseudo_label.sh

Jump to step 4.2.4 Ensembling + Pseudo labeling

  • Stage3:
$ bash warmup_ext_dataset.sh      #train with pseudo labeling (public-test, padchest, pneumothorax, vin) + rsna_pneumonia
$ bash train_final.sh             #train siim covid19, load warmup checkpoint

4.2.3 FasterRCNN FPN 768 & 1024

  • Stage1: train backbone of model with chexpert + chest14 -> train model with rsna pneummonia -> train model with siim, load rsna pneumonia checkpoint
$ cd src/detection_fasterrcnn
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python train_chexpert_chest14.py --steps 0 1 --cfg configs/resnet200d.yaml
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python train_chexpert_chest14.py --steps 0 1 --cfg configs/resnet101d.yaml
$ CUDA_VISIBLE_DEVICES=0 python train_rsnapneu.py --cfg configs/resnet200d.yaml
$ CUDA_VISIBLE_DEVICES=0 python train_rsnapneu.py --cfg configs/resnet101d.yaml
$ CUDA_VISIBLE_DEVICES=0 python train_siim.py --cfg configs/resnet200d.yaml --folds 0 1 2 3 4 --SEED 123
$ CUDA_VISIBLE_DEVICES=0 python train_siim.py --cfg configs/resnet101d.yaml --folds 0 1 2 3 4 --SEED 123

Note: Change SEED if training script runs into issue related to augmentation (boundingbox area=0) and comment/uncomment the following code if training script runs into issue related to resource limit

import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (8192, rlimit[1]))
  • Stage2: Generate pseudo label (boxes)
$ bash generate_pseudo_label.sh

Jump to step 4.2.4 Ensembling + Pseudo labeling

  • Stage3:
$ CUDA_VISIBLE_DEVICES=0 python warmup_ext_dataset.py --cfg configs/resnet200d.yaml
$ CUDA_VISIBLE_DEVICES=0 python warmup_ext_dataset.py --cfg configs/resnet101d.yaml
$ CUDA_VISIBLE_DEVICES=0 python train_final.py --cfg configs/resnet200d.yaml
$ CUDA_VISIBLE_DEVICES=0 python train_final.py --cfg configs/resnet101d.yaml

4.2.4 Ensembling + Pseudo labeling

Keep images that meet the conditions: negative prediction < 0.3 and maximum of (typical, indeterminate, atypical) predicion > 0.7. Then choose 2 boxes with the highest confidence as pseudo labels for each image.

Note: This step requires at least 128 GB of RAM

$ cd ./src/detection_make_pseudo
$ python make_pseudo.py
$ python make_annotation.py            

4.2.5 Detection Performance

YoloV5x6 768 EffdetD7 768 F-RCNN R200 768 F-RCNN R101 1024
[email protected] TTA 0.580 0.594 0.592 0.596

Final result: Public LB/Private LB: 0.658/0.635

5.FINAL KERNEL

siim-covid19-2021
demo notebook to visualize output of models

6.AWESOME RESOURCES

Pytorch
PyTorch Image Models
Segmentation models
EfficientDet
YoloV5
FasterRCNN FPN
Albumentations
Weighted boxes fusion

Owner
Nguyen Ba Dung
https://www.linkedin.com/in/dungnb1333/
Nguyen Ba Dung
aardio的opencv库

opencv_aardio dll库下载地址:https://github.com/xuncv/opencv-plugin/releases import cv2 img = cv2.imread("./images/Lena.jpg",1) img = cv2.medianBlur(img,5)

71 Dec 31, 2022

Installations for running keras-theano on GPU Upgrade pip and install opencv2 cd ~ pip install --upgrade pip pip install opencv-python Upgrade keras

Berat Kurar Barakat 14 Sep 30, 2022
【Auto】原神⭐钓鱼辅助工具 | 自动收竿、校准游标 | ✨您只需要抛出鱼竿,我们会帮你完成一切✨

原神钓鱼辅助工具 ✨ 作者正在努力重构代码中……会尽快带给大家一个更完美的脚本 ✨ 「您只需抛出鱼竿,然后我们会帮您搞定一切」 如果你觉得这个脚本好用,请点一个 Star ⭐ ,你的 Star 就是作者更新最大的动力 点击这里 查看演示视频 ✨ 欢迎大家在 Issues 中分享自己的配置文件 ✨ ✨

261 Jan 02, 2023
CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering" official PyTorch implementation.

LED2-Net This is PyTorch implementation of our CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering". Y

Fu-En Wang 83 Jan 04, 2023
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
An unofficial package help developers to implement ZATCA (Fatoora) QR code easily which required for e-invoicing

ZATCA (Fatoora) QR-Code Implementation An unofficial package help developers to implement ZATCA (Fatoora) QR code easily which required for e-invoicin

TheAwiteb 28 Nov 03, 2022
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).

OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents

Zuming Huang 363 Jan 03, 2023
EAST for ICPR MTWI 2018 Challenge II (Text detection of network images)

EAST_ICPR2018: EAST for ICPR MTWI 2018 Challenge II (Text detection of network images) Introduction This is a repository forked from argman/EAST for t

QichaoWu 49 Dec 24, 2022
An official PyTorch implementation of the paper "Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences", ICCV 2021.

PyTorch implementation of Learning by Aligning (ICCV 2021) This is an official PyTorch implementation of the paper "Learning by Aligning: Visible-Infr

CV Lab @ Yonsei University 30 Nov 05, 2022
This is used to convert a string to an Image with Handwritten Characters.

Text-to-Handwriting-using-python This is used to convert a string to an Image with Handwritten Characters. text_to_handwriting(string: str, save_to: s

Akashdeep Mahata 3 Aug 15, 2022
This is a GUI program which consist of 4 OpenCV projects

Tkinter-OpenCV Project Using Tkinter, Opencv, Mediapipe This is a python GUI program using Tkinter which consist of 4 OpenCV projects 1. Finger Counte

Arya Bagde 3 Feb 22, 2022
fishington.io bot with OpenCV and NumPy

fishington.io-bot fishington.io bot with using OpenCV and NumPy bot can continue to fishing fully automatically how to use Open cmd in fishington.io-b

Bahadır Araz 77 Jan 02, 2023
Scene text recognition

AttentionOCR for Arbitrary-Shaped Scene Text Recognition Introduction This is the ranked No.1 tensorflow based scene text spotting algorithm on ICDAR2

777 Jan 09, 2023
Train custom VR face tracking parameters

Pal Buddy Guy: The anipal's best friend This is a small script to improve upon the tracking capabilities of the Vive Pro Eye and facial tracker. You c

7 Dec 12, 2021
Python Computer Vision Aim Bot for Roblox's Phantom Forces

Python-Phantom-Forces-Aim-Bot Python Computer Vision Aim Bot for Roblox's Phanto

drag0ngam3s 2 Jul 11, 2022
Pure Javascript OCR for more than 100 Languages 📖🎉🖥

Version 2 is now available and under development in the master branch, read a story about v2: Why I refactor tesseract.js v2? Check the support/1.x br

Project Naptha 29.2k Jan 05, 2023
A synthetic data generator for text recognition

TextRecognitionDataGenerator A synthetic data generator for text recognition What is it for? Generating text image samples to train an OCR software. N

Edouard Belval 2.5k Jan 04, 2023
基于Paddle框架的PSENet复现

PSENet-Paddle 基于Paddle框架的PSENet复现 本项目基于paddlepaddle框架复现PSENet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 AIStudio链接 参考项目: whai362-PSENet 环境配置 本项目

QuanHao Guo 4 Apr 24, 2022
OCR-D-compliant page segmentation

ocrd_segment This repository aims to provide a number of OCR-D-compliant processors for layout analysis and evaluation. Installation In your virtual e

OCR-D 59 Sep 10, 2022
MXNet OCR implementation. Including text recognition and detection.

insightocr Text Recognition Accuracy on Chinese dataset by caffe-ocr Network LSTM 4x1 Pooling Gray Test Acc SimpleNet N Y Y 99.37% SE-ResNet34 N Y Y 9

Deep Insight 99 Nov 01, 2022