Train custom VR face tracking parameters

Overview

Pal Buddy Guy: The anipal's best friend

This is a small script to improve upon the tracking capabilities of the Vive Pro Eye and facial tracker. You can create custom expressions by making the expression and calibrating on that parameter.

SYSTEM REQUIREMENTS

Currently this requires a CUDA-capable (nvidia) GPU with at least 4gb vram. It is possible to support AMD GPUs, but this will take some additional development work. Also, the current example script requires both the eye and face tracker. However, it would be simple to adapt it to work with only eye or only face.

Installation

You must first replace the tvm_runtime and opencl DLLs inside SRanipal. Copy the two .DLL files from the "tvm runtime" folder into "C:\Program Files\VIVE\SRanipal" replacing the existing files. You should back up your old files incase you want to revert later.

You then need to install Pytorch with gpu support. The easiest way to do so is using anaconda. To install the runtime with anaconda, launch anaconda by searching "Anaconda prompt" in the start menu. Once open, run the following commands:

conda install cudatoolkit cudnn pip
pip install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio===0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
pip install tqdm opencv-python numpy

Running

Make sure to run this script before opening SRanipalRuntime!

** output swapping ** Before running any other commands, ensure the output window shows eye cameras on top, and face cameras below. If its reversed, run the comamand "swap" to swap them first. This will be handled automatically in a later release.

** recording ** To run this, you must first record some "calibration" data for the expressions you want. This must always include a "neutral" face recording. This is explained in more detail below. When recording you sould try to make movements during the 20-30 seconds that you are calibrating, just make sure the target expression you are calibrating for is the most predominant (this also includes like adjusting your headset and stuff while making the expression)

the idea is to capture some diverse data where the primary consistent point is the target expression. Once you record one for each expression you want (both face and eyes are recorded at the same time) I can explain the next bit

You will also need to edit the top of script.py to change the save folder path. its not run directory cause each recording is 408mb so you need a decent amount of storage space free

** training ** Once you have recorded some datasets, edit script.py to include the filenames in the table at the top of the file. Run the script, and enter the "train" command. Once it finishes, make sure to run "save" to save the results. Loss/Avg should be below 0.001 by the end. if not, something is wrong.

** inference ** Run the script and enter "infer". This is what you will run when actually using the parameters

Tips

For neutral face recordings, this shouldn't nesisarily be truly neutral face, but any faces that you aren't trying to track. I keep it mostly neutral but also do some taking, and make sure to look around/blink with the eye tracker (unless one of your parameters is related to that) This is basically to give the AI something to say "we aren't trying to look for this" so it doesnt have false positives.

Rotational region detection based on Faster-RCNN.

R2CNN_Faster_RCNN_Tensorflow Abstract This is a tensorflow re-implementation of R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detecti

UCAS-Det 581 Nov 22, 2022
A tool combining EasyOCR and LaMa to automatically detect text and replace it with an inpainted background.

EasyLaMa (WIP) This is a tool combining EasyOCR and LaMa to automatically detect text and replace it with an inpainted background. Installation For GP

3 Sep 17, 2022
Total Text Dataset. It consists of 1555 images with more than 3 different text orientations: Horizontal, Multi-Oriented, and Curved, one of a kind.

Total-Text-Dataset (Official site) Updated on April 29, 2020 (Detection leaderboard is updated - highlighted E2E methods. Thank you shine-lcy.) Update

Chee Seng Chan 671 Dec 27, 2022
Handwritten_Text_Recognition

Deep Learning framework for Line-level Handwritten Text Recognition Short presentation of our project Introduction Installation 2.a Install conda envi

24 Jul 15, 2022
color detection using python

colordetection color detection using python In this color detection Python project, we are going to build an application through which you can automat

Ruchith Kumar 1 Nov 04, 2021
This is used to convert a string to an Image with Handwritten Characters.

Text-to-Handwriting-using-python This is used to convert a string to an Image with Handwritten Characters. text_to_handwriting(string: str, save_to: s

Akashdeep Mahata 3 Aug 15, 2022
Driver Drowsiness Detection with OpenCV & Dlib

In this project, we have built a driver drowsiness detection system that will detect if the eyes of the driver are close for too long and infer if the driver is sleepy or inactive.

Mansi Mishra 4 Oct 26, 2022
Geometric Augmentation for Text Image

Text Image Augmentation A general geometric augmentation tool for text images in the CVPR 2020 paper "Learn to Augment: Joint Data Augmentation and Ne

Canjie Luo 440 Jan 05, 2023
Text page dewarping using a "cubic sheet" model

page_dewarp Page dewarping and thresholding using a "cubic sheet" model - see full writeup at https://mzucker.github.io/2016/08/15/page-dewarping.html

Matt Zucker 1.2k Dec 29, 2022
Learning Camera Localization via Dense Scene Matching, CVPR2021

This repository contains code of our CVPR 2021 paper - "Learning Camera Localization via Dense Scene Matching" by Shitao Tang, Chengzhou Tang, Rui Hua

tangshitao 65 Dec 01, 2022
graph learning code for ogb

The final code for OGB Installation Requirements: ogb=1.3.1 torch=1.7.0 torch-geometric=1.7.0 torch-scatter=2.0.6 torch-sparse=0.6.9 Baseline models T

PierreHao 20 Nov 10, 2022
Some Boring Research About Products Recognition 、Duplicate Img Detection、Img Stitch、OCR

Products Recognition 介绍 商品识别,围绕在复杂的商场零售场景中,识别出货架图像中的商品信息。主要组成部分: 重复图像检测。【更新进度 4/10】 图像拼接。【更新进度 0/10】 目标检测。【更新进度 0/10】 商品识别。【更新进度 1/10】 OCR。【更新进度 1/10】

zhenjieWang 18 Jan 27, 2022
Use Youdao OCR API to covert your clipboard image to text.

Alfred Clipboard OCR 注:本仓库基于 oott123/alfred-clipboard-ocr 的逻辑用 Python 重写,换用了有道 AI 的 API,准确率更高,有效防止百度导致隐私泄露等问题,并且有道 AI 初始提供的 50 元体验金对于其资费而言个人用户基本可以永久使用

Junlin Liu 6 Sep 19, 2022
BNF Globalization Code (CVPR 2016)

Boundary Neural Fields Globalization This is the code for Boundary Neural Fields globalization method. The technical report of the method can be found

25 Apr 15, 2022
Fatigue Driving Detection Based on Dlib

Fatigue Driving Detection Based on Dlib

5 Dec 14, 2022
Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.

Sign Language Recognition Service This is a Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform s

Martin Lønne 1 Jan 08, 2022
Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

OCRopus 3.2k Dec 31, 2022
Code for the AAAI 2018 publication "SEE: Towards Semi-Supervised End-to-End Scene Text Recognition"

SEE: Towards Semi-Supervised End-to-End Scene Text Recognition Code for the AAAI 2018 publication "SEE: Towards Semi-Supervised End-to-End Scene Text

Christian Bartz 572 Jan 05, 2023
Convert scans of handwritten notes to beautiful, compact PDFs

Convert scans of handwritten notes to beautiful, compact PDFs

Matt Zucker 4.8k Jan 01, 2023
Document blur detection based on Laplacian operator and text detection.

Document Blur Detection For general blurred image, using the variance of Laplacian operator is a good solution. But as for the blur detection of docum

JoeyLr 5 Oct 20, 2022