PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

Overview

SimTrans-Weak-Shot-Classification

This repository contains the official PyTorch implementation of the following paper:

Weak-shot Fine-grained Classification via Similarity Transfer

Junjie Chen, Li Niu, Liu Liu, Liqing Zhang
MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University
https://arxiv.org/abs/2009.09197
Accepted by NeurIPS2021.

Abstract

Recognizing fine-grained categories remains a challenging task, due to the subtle distinctions among different subordinate categories, which results in the need of abundant annotated samples. To alleviate the data-hungry problem, we consider the problem of learning novel categories from web data with the support of a clean set of base categories, which is referred to as weak-shot learning. In this setting, we propose to transfer pairwise semantic similarity from base categories to novel categories. Specifically, we firstly train a similarity net on clean data, and then leverage the transferred similarity to denoise web training data using two simple yet effective strategies. In addition, we apply adversarial loss on similarity net to enhance the transferability of similarity. Comprehensive experiments on three fine-grained datasets demonstrate the effectiveness of our setting and method.

1. Setting

In practice, we often have a set of base categories with sufficient well-labeled data, and the problem is how to learn novel categories with less expense, in which base categories and novel categories have no overlap. Such problem motivates zero-shot learning, few-shot learning, as well as our setting. To bridge the gap between base categories and novel categories, zero-shot learning requires category-level semantic representation for all categories, while few-shot learning requires a few clean examples for novel categories. Considering the drawbacks of zero/few-shot learning and the accessibility of free web data, we intend to learn novel categories by virtue of web data with the support of a clean set of base categories.

2. Our Method

Specifically, our framework consists of two training phases. Firstly, we train a similarity net (SimNet) on base training set, which feeds in two images and outputs the semantic similarity. Secondly, we apply the trained SimNet to obtain the semantic similarities among web images. In this way, the similarity is transferred from base categories to novel categories. Based on the transferred similarities, we design two simple yet effective methods to assist in learning the main classifier on novel training set. (1) Sample weighting (i.e., assign small weights to the images dissimilar to others) reduces the impact of outliers (web images with incorrect labels) and thus alleviates the problem of noise overfitting. (2) Graph regularization (i.e., pull close the features of semantically similar samples) prevents the feature space from being disturbed by noisy labels. In addition, we propose to apply adversarial loss on SimNet to make it indistinguishable for base categories and novel categories, so that the transferability of similarity is strengthened.

3. Results

Extensive experiments on three fine-grained datasets have demonstrated the potential of our learning scenario and the effectiveness of our method. For qualitative analysis, on the one hand, the clean images are assigned with high weights, while the images belonging to outlier are assigned with low weights; on the other hand, the transferred similarities accurately portray the semantic relations among web images.

4. Experiment Codebase

4.1 Data

We provide the packages of CUB, Car, FGVC, and WebVision at Baidu Cloud (access code: BCMI).

The original packages are split by split -b 10G ../CUB.zip CUB.zip., thus we need merge by cat CUB.zip.a* > CUB.zip before decompression.

The ImageNet dataset is publicly available, and all data files are configured as:

├── CUB
├── Car
├── Air
├── WebVision
├── ImageNet:
  ├── train
      ├── ……
  ├── val
      ├── ……
  ├── ILSVRC2012_validation_ground_truth.txt
  ├── meta.mat
  ├── train_files.txt

Just employ --data_path ANY_PATH/CUB to specify the data dir.

4.2 Install

See requirement.txt.

4.3 Evaluation

The trained models are released as trained_models.zip at Baidu Cloud (access code: BCMI).

The command in _scripts/DATASET_NAME/eval.sh is used to evaluate the model.

4.4 Training

We provide the full scripts for CUB dataset in _scripts/CUB/ dir as an example.

For other datasets, just change the data path, i.e., --data_path ANY_PATH/WebVision.

Bibtex

If you find this work is useful for your research, please cite our paper using the following BibTeX [pdf] [supp] [arxiv]:

@inproceedings{SimTrans2021,
title={Weak-shot Fine-grained Classification via Similarity Transfer},
author={Chen, Junjie and Niu, Li and Liu, Liu and Zhang, Liqing},
booktitle={NeurIPS},
year={2021}}
Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
style mixing for animation face

An implementation of StyleGAN on Animation dataset. Install git clone https://github.com/MorvanZhou/anime-StyleGAN cd anime-StyleGAN pip install -r re

Morvan 46 Nov 30, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
Message Passing on Cell Complexes

CW Networks This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Leh

Twitter Research 108 Jan 05, 2023
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
Repository for the paper titled: "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer"

When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer This repository contains code for our paper titled "When is BERT M

Princeton Natural Language Processing 9 Dec 23, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)

MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12

Yunjey Choi 401 Dec 30, 2022
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

7 Mar 28, 2022
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022