PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

Overview

SimTrans-Weak-Shot-Classification

This repository contains the official PyTorch implementation of the following paper:

Weak-shot Fine-grained Classification via Similarity Transfer

Junjie Chen, Li Niu, Liu Liu, Liqing Zhang
MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University
https://arxiv.org/abs/2009.09197
Accepted by NeurIPS2021.

Abstract

Recognizing fine-grained categories remains a challenging task, due to the subtle distinctions among different subordinate categories, which results in the need of abundant annotated samples. To alleviate the data-hungry problem, we consider the problem of learning novel categories from web data with the support of a clean set of base categories, which is referred to as weak-shot learning. In this setting, we propose to transfer pairwise semantic similarity from base categories to novel categories. Specifically, we firstly train a similarity net on clean data, and then leverage the transferred similarity to denoise web training data using two simple yet effective strategies. In addition, we apply adversarial loss on similarity net to enhance the transferability of similarity. Comprehensive experiments on three fine-grained datasets demonstrate the effectiveness of our setting and method.

1. Setting

In practice, we often have a set of base categories with sufficient well-labeled data, and the problem is how to learn novel categories with less expense, in which base categories and novel categories have no overlap. Such problem motivates zero-shot learning, few-shot learning, as well as our setting. To bridge the gap between base categories and novel categories, zero-shot learning requires category-level semantic representation for all categories, while few-shot learning requires a few clean examples for novel categories. Considering the drawbacks of zero/few-shot learning and the accessibility of free web data, we intend to learn novel categories by virtue of web data with the support of a clean set of base categories.

2. Our Method

Specifically, our framework consists of two training phases. Firstly, we train a similarity net (SimNet) on base training set, which feeds in two images and outputs the semantic similarity. Secondly, we apply the trained SimNet to obtain the semantic similarities among web images. In this way, the similarity is transferred from base categories to novel categories. Based on the transferred similarities, we design two simple yet effective methods to assist in learning the main classifier on novel training set. (1) Sample weighting (i.e., assign small weights to the images dissimilar to others) reduces the impact of outliers (web images with incorrect labels) and thus alleviates the problem of noise overfitting. (2) Graph regularization (i.e., pull close the features of semantically similar samples) prevents the feature space from being disturbed by noisy labels. In addition, we propose to apply adversarial loss on SimNet to make it indistinguishable for base categories and novel categories, so that the transferability of similarity is strengthened.

3. Results

Extensive experiments on three fine-grained datasets have demonstrated the potential of our learning scenario and the effectiveness of our method. For qualitative analysis, on the one hand, the clean images are assigned with high weights, while the images belonging to outlier are assigned with low weights; on the other hand, the transferred similarities accurately portray the semantic relations among web images.

4. Experiment Codebase

4.1 Data

We provide the packages of CUB, Car, FGVC, and WebVision at Baidu Cloud (access code: BCMI).

The original packages are split by split -b 10G ../CUB.zip CUB.zip., thus we need merge by cat CUB.zip.a* > CUB.zip before decompression.

The ImageNet dataset is publicly available, and all data files are configured as:

├── CUB
├── Car
├── Air
├── WebVision
├── ImageNet:
  ├── train
      ├── ……
  ├── val
      ├── ……
  ├── ILSVRC2012_validation_ground_truth.txt
  ├── meta.mat
  ├── train_files.txt

Just employ --data_path ANY_PATH/CUB to specify the data dir.

4.2 Install

See requirement.txt.

4.3 Evaluation

The trained models are released as trained_models.zip at Baidu Cloud (access code: BCMI).

The command in _scripts/DATASET_NAME/eval.sh is used to evaluate the model.

4.4 Training

We provide the full scripts for CUB dataset in _scripts/CUB/ dir as an example.

For other datasets, just change the data path, i.e., --data_path ANY_PATH/WebVision.

Bibtex

If you find this work is useful for your research, please cite our paper using the following BibTeX [pdf] [supp] [arxiv]:

@inproceedings{SimTrans2021,
title={Weak-shot Fine-grained Classification via Similarity Transfer},
author={Chen, Junjie and Niu, Li and Liu, Liu and Zhang, Liqing},
booktitle={NeurIPS},
year={2021}}
Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

Sanja Fidler's Lab 52 Nov 22, 2022
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

German Bauer 11 Feb 08, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022