Infrastructure template and Jupyter notebooks for running RoseTTAFold on AWS Batch.

Overview

AWS RoseTTAFold

Infrastructure template and Jupyter notebooks for running RoseTTAFold on AWS Batch.

Overview

Proteins are large biomolecules that play an important role in the body. Knowing the physical structure of proteins is key to understanding their function. However, it can be difficult and expensive to determine the structure of many proteins experimentally. One alternative is to predict these structures using machine learning algorithms. Several high-profile research teams have released such algorithms, including AlphaFold 2 (from DeepMind) and RoseTTAFold (From the Baker lab at the University of Washington). Their work was important enough for Science magazine to name it the "2021 Breakthrough of the Year".

Both AlphaFold 2 and RoseTTAFold use a multi-track transformer architecture trained on known protein templates to predict the structure of unknown peptide sequences. These predictions are heavily GPU-dependent and take anywhere from minutes to days to complete. The input features for these predictions include multiple sequence alignment (MSA) data. MSA algorithms are CPU-dependent and can themselves require several hours of processing time.

Running both the MSA and structure prediction steps in the same computing environment can be cost inefficient, because the expensive GPU resources required for the prediction sit unused while the MSA step runs. Instead, using a high performance computing (HPC) service like AWS Batch allows us to run each step as a containerized job with the best fit of CPU, memory, and GPU resources.

This project demonstrates how to provision and use AWS services for running the RoseTTAFold protein folding algorithm on AWS Batch.

Setup

  1. Log into the AWS Console.

  2. Click on Launch Stack:

    Launch Stack

  3. For Stack Name, enter a unique name.

  4. Select an availability zone from the dropdown menu.

  5. Acknowledge that AWS CloudFormation might create IAM resources and then click Create Stack.

  6. It will take 10 minutes for CloudFormation to create the stack and another 15 minutes for CodeBuild to build and publish the container (25 minutes total). Please wait for both of these tasks to finish before you submit any analysis jobs.

  7. Download and extract the RoseTTAFold network weights (under Rosetta-DL Software license), and sequence and structure databases to the newly-created FSx for Lustre file system. There are two ways to do this:

Option 1

In the AWS Console, navigate to EC2 > Launch Templates, select the template beginning with "aws-rosettafold-launch-template-", and then Actions > Launch instance from template. Select the Amazon Linux 2 AMI and launch the instance into the public subnet with a public IP. SSH into the instance and download/extract your network weights and reference data of interest to the attached volume at /fsx/aws-rosettafold-ref-data (i.e. Installation steps 3 and 5 from the RoseTTAFold public repository)

Option 2

Create a new S3 bucket in your region of interest. Spin up an EC2 instance in a public subnet in the same region and use this to download and extract the network weights and reference data. Once this is complete, copy the extracted data to S3. In the AWS Console, navigate to FSx > File Systems and select the FSx for Lustre file system created above. Link this file system to your new S3 bucket using these instructions. Specify /aws-rosettafold-ref-data as the file system path when creating the data repository association. This is a good option if you want to create multiple stacks without downloading and extracting the reference data multiple times. Note that the first job you submit using this data repository will cause the FSx file system to transfer and compress 3 TB of reference data from S3. This process may require as many as six hours to complete. Alternatively, you can preload files into the file system by following these instructions.

Once this is complete, your FSx for Lustre file system should look like this (file sizes are uncompressed):

/fsx
└── /aws-rosettafold-ref-data
    ├── /bfd
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_a3m.ffdata (1.4 TB)
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_a3m.ffindex (1.7 GB)
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_cs219.ffdata (15.7 GB)
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_cs219.ffindex (1.6 GB)
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_hhm.ffdata (304.4 GB)
    │   └── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_hhm.ffindex (123.6 MB)
    ├── /pdb100_2021Mar03
    │   ├── LICENSE (20.4 KB)
    │   ├── pdb100_2021Mar03_a3m.ffdata (633.9 GB)
    │   ├── pdb100_2021Mar03_a3m.ffindex (3.9 MB)
    │   ├── pdb100_2021Mar03_cs219.ffdata (41.8 MB)
    │   ├── pdb100_2021Mar03_cs219.ffindex (2.8 MB)
    │   ├── pdb100_2021Mar03_hhm.ffdata (6.8 GB)
    │   ├── pdb100_2021Mar03_hhm.ffindex (3.4 GB)
    │   ├── pdb100_2021Mar03_pdb.ffdata (26.2 GB)
    │   └── pdb100_2021Mar03_pdb.ffindex (3.7 MB)
    ├── /UniRef30_2020_06
    │   ├── UniRef30_2020_06_a3m.ffdata (139.6 GB)
    │   ├── UniRef30_2020_06_a3m.ffindex (671.0 MG)
    │   ├── UniRef30_2020_06_cs219.ffdata (6.0 GB)
    │   ├── UniRef30_2020_06_cs219.ffindex (605.0 MB)
    │   ├── UniRef30_2020_06_hhm.ffdata (34.1 GB)
    │   ├── UniRef30_2020_06_hhm.ffindex (19.4 MB)
    │   └── UniRef30_2020_06.md5sums (379.0 B)
    └── /weights
        ├── RF2t.pt (126 MB KB)
        ├── Rosetta-DL_LICENSE.txt (3.1 KB)
        ├── RoseTTAFold_e2e.pt (533 MB)
        └── RoseTTAFold_pyrosetta.pt (506 MB)

  1. Clone the CodeCommit repository created by CloudFormation to a Jupyter Notebook environment of your choice.
  2. Use the AWS-RoseTTAFold.ipynb and CASP14-Analysis.ipynb notebooks to submit protein sequences for analysis.

Architecture

AWS-RoseTTAFold Architecture

This project creates two computing environments in AWS Batch to run the "end-to-end" protein folding workflow in RoseTTAFold. The first of these uses the optimal mix of c4, m4, and r4 spot instance types based on the vCPU and memory requirements specified in the Batch job. The second environment uses g4dn on-demand instances to balance performance, availability, and cost.

A scientist can create structure prediction jobs using one of the two included Jupyter notebooks. AWS-RoseTTAFold.ipynb demonstrates how to submit a single analysis job and view the results. CASP14-Analysis.ipynb demonstrates how to submit multiple jobs at once using the CASP14 target list. In both of these cases, submitting a sequence for analysis creates two Batch jobs, one for data preparation (using the CPU computing environment) and a second, dependent job for structure prediction (using the GPU computing environment).

Both the data preparation and structure prediction use the same Docker image for execution. This image, based on the public Nvidia CUDA image for Ubuntu 20, includes the v1.1 release of the public RoseTTAFold repository, as well as additional scripts for integrating with AWS services. CodeBuild will automatically download this container definition and build the required image during stack creation. However, end users can make changes to this image by pushing to the CodeCommit repository included in the stack. For example, users could replace the included MSA algorithm (hhblits) with an alternative like MMseqs2 or replace the RoseTTAFold network with an alternative like AlphaFold 2 or Uni-Fold.

Costs

This workload costs approximately $217 per month to maintain, plus another $2.56 per job.

Deployment

AWS-RoseTTAFold Dewployment

Running the CloudFormation template at config/cfn.yaml creates the following resources in the specified availability zone:

  1. A new VPC with a private subnet, public subnet, NAT gateway, internet gateway, elastic IP, route tables, and S3 gateway endpoint.
  2. A FSx Lustre file system with 1.2 TiB of storage and 120 MB/s throughput capacity. This file system can be linked to an S3 bucket for loading the required reference data when the first job executes.
  3. An EC2 launch template for mounting the FSX file system to Batch compute instances.
  4. A set of AWS Batch compute environments, job queues, and job definitions for running the CPU-dependent data prep job and a second for the GPU-dependent prediction job.
  5. CodeCommit, CodeBuild, CodePipeline, and ECR resources for building and publishing the Batch container image. When CloudFormation creates the CodeCommit repository, it populates it with a zipped version of this repository stored in a public S3 bucket. CodeBuild uses this repository as its source and adds additional code from release 1.1 of the public RoseTTAFold repository. CodeBuild then publishes the resulting container image to ECR, where Batch jobs can use it as needed.

Licensing

This library is licensed under the MIT-0 License. See the LICENSE file for more information.

The University of Washington has made the code and data in the RoseTTAFold public repository available under an MIT license. However, the model weights used for prediction are only available for internal, non-profit, non-commercial research use. For information, please see the full license agreement and contact the University of Washington for details.

Security

See CONTRIBUTING for more information.

More Information

Owner
AWS Samples
AWS Samples
Stackoverflow Telegram Bot With Python

Template for Telegram Bot Template to create a telegram bot in python. How to Run Set your telegram bot token as environment variable TELEGRAM_BOT_TOK

PyTopia 10 Mar 07, 2022
This code is for a bot which will find a Twitter user's most tweeted word and tweet that word, tagging said user

max_tweeted_word This code is for a bot which will find a Twitter user's most tweeted word and tweet that word, tagging said user The program uses twe

Yasho Bapat 1 Nov 29, 2021
A synchronous, object oriented API wrapper for thecatapi

cats.py A synchronous, object oriented API wrapper for thecatapi Table Of Content cats.py Table Of Content Installation Usage Contributing FAQ License

Marcus 2 Feb 04, 2022
Utility for downloading fanfiction in bulk from the Archive of Our Own

What is this? This is a program intended to help you download fanfiction from the Archive of Our Own in bulk. This program is primarily intended to wo

73 Dec 30, 2022
Attempting to create a framework for Discord Slash commands... yes

discord_slash.py Attempting to create a framework for Discord Slash commands... yes Installation pip install slashpy Documentation Coming soon™ Why is

AlexFlipnote 11 Mar 24, 2021
Python client library for Postmark API

Postmarker Python client library for Postmark API. Gitter: https://gitter.im/Stranger6667/postmarker Installation Postmarker can be obtained with pip:

Dmitry Dygalo 109 Dec 13, 2022
Monitor robot of Apple Store's products, using DingTalk notification.

概述 本项目应用主要用来监测Apple Store线下直营店货源情况,主要使用Python实现。 首先感谢iPhone-Pickup-Monitor项目带来的灵感,同时有些实现也直接使用了该项目的一些代码。 本项目在iPhone-Pickup-Monitor原有功能的基础上去掉了声音通知,但添加了多

Lennon Chin 159 Dec 09, 2022
BSDotPy, A module to get a bombsquad player's account data.

BSDotPy BSDotPy, A module to get a bombsquad player's account data from bombsquad's servers. Badges Provided By: shields.io Acknowledgements Issues Pu

Rudransh Joshi 3 Feb 17, 2022
Bearer API client for Python

Bearer Python Bearer Python client Installation pip install bearer Usage Get your Bearer Secret Key and integration id from the Dashboard and use the

Bearer 9 Oct 31, 2022
Telegram 聊天機器人,追蹤momo降價、重新上架

簡介 price-tracker-bot is a telegram bot that can trace the price on momoshop. 功能 降價通知 上架通知 收藏商品 清空已收藏商品 顯示目前已收藏商品 Demo Bot Telegram bot search @momo_pr

92 Dec 28, 2022
Discord bot to administer IITD Study Servers (unofficial)

IITD-Bot Discord bot to administer IITD'20 Acad Server Commands hello to check if bot is online ?help to display this message ?set kerberos to set y

Aditya Singh 47 Dec 19, 2022
Send to Telegram, Vk, Discord

Triple send Версия для русских: здесь Demo: Telegram: @Triple_project_bot Discord: Triple project#0877 Vkontakte: @dev.santaspeen How to run Install r

2 Sep 27, 2022
Shedding a new skin on Dis-Snek's commands.

Molter - WIP Shedding a new skin on Dis-Snek's commands. Currently, its goals are to make message commands more similar to discord.py's message comman

Astrea 7 May 01, 2022
Powerful Telegram userbot to turn your PROFILE PICTURE & LAST NAME into a real time clock & to change your BIO automatically.

DATE_TIME_USERBOT-TeLeTiPs Powerful Telegram userbot to turn your PROFILE PICTURE & LAST NAME into a real time clock & to change your BIO automaticall

53 Jan 05, 2023
Cogs for Red-DiscordBot

Redbot cogs for Red-DiscordBot authored by Kreusada This is my repository for Red Discord-Bot. I built these cogs because these were the features that

Kreus Amredes 26 Nov 07, 2022
A Powerful Discord Webhook spammer

RocketHook | The discord spammer Some links: Telegram | Github FEATURES 🤖 Hide your ass and be a good robot ! Full proxies support HTTP/S, SOCKS4/5 S

Or 2 Feb 27, 2022
OpenAPI Generator allows generation of API client libraries (SDK generation), server stubs, documentation and configuration automatically given an OpenAPI Spec (v2, v3)

OpenAPI Generator Master (5.3.1): 5.4.x (5.4.x): 6.0.x (6.0.x): ⭐ ⭐ ⭐ If you would like to contribute, please refer to guidelines and a list of open t

OpenAPI Tools 14.8k Jan 04, 2023
JAWS Pankration 2021 - DDD on AWS Lambda sample

JAWS Pankration 2021 - DDD on AWS Lambda sample What is this project? This project contains sample code for AWS Lambda with domain models. I presented

Atsushi Fukui 21 Mar 30, 2022
Lending-Club-Loans - Using TensorFlow to create an ANN model to predict whether people would charge off or pay back their loans.

Lending Club Loans: Brief Introduction LendingClub is a US peer-to-peer lending company, headquartered in San Francisco, California.[3] It was the fir

Ali Akram 1 Jan 03, 2022
Free python/telegram bot for easy execution and surveillance of crypto trading plans on multiple exchanges.

EazeBot Introduction Have you ever traded cryptocurrencies and lost overview of your planned buys/sells? Have you encountered the experience that your

Marcel Beining 100 Dec 06, 2022