Infrastructure template and Jupyter notebooks for running RoseTTAFold on AWS Batch.

Overview

AWS RoseTTAFold

Infrastructure template and Jupyter notebooks for running RoseTTAFold on AWS Batch.

Overview

Proteins are large biomolecules that play an important role in the body. Knowing the physical structure of proteins is key to understanding their function. However, it can be difficult and expensive to determine the structure of many proteins experimentally. One alternative is to predict these structures using machine learning algorithms. Several high-profile research teams have released such algorithms, including AlphaFold 2 (from DeepMind) and RoseTTAFold (From the Baker lab at the University of Washington). Their work was important enough for Science magazine to name it the "2021 Breakthrough of the Year".

Both AlphaFold 2 and RoseTTAFold use a multi-track transformer architecture trained on known protein templates to predict the structure of unknown peptide sequences. These predictions are heavily GPU-dependent and take anywhere from minutes to days to complete. The input features for these predictions include multiple sequence alignment (MSA) data. MSA algorithms are CPU-dependent and can themselves require several hours of processing time.

Running both the MSA and structure prediction steps in the same computing environment can be cost inefficient, because the expensive GPU resources required for the prediction sit unused while the MSA step runs. Instead, using a high performance computing (HPC) service like AWS Batch allows us to run each step as a containerized job with the best fit of CPU, memory, and GPU resources.

This project demonstrates how to provision and use AWS services for running the RoseTTAFold protein folding algorithm on AWS Batch.

Setup

  1. Log into the AWS Console.

  2. Click on Launch Stack:

    Launch Stack

  3. For Stack Name, enter a unique name.

  4. Select an availability zone from the dropdown menu.

  5. Acknowledge that AWS CloudFormation might create IAM resources and then click Create Stack.

  6. It will take 10 minutes for CloudFormation to create the stack and another 15 minutes for CodeBuild to build and publish the container (25 minutes total). Please wait for both of these tasks to finish before you submit any analysis jobs.

  7. Download and extract the RoseTTAFold network weights (under Rosetta-DL Software license), and sequence and structure databases to the newly-created FSx for Lustre file system. There are two ways to do this:

Option 1

In the AWS Console, navigate to EC2 > Launch Templates, select the template beginning with "aws-rosettafold-launch-template-", and then Actions > Launch instance from template. Select the Amazon Linux 2 AMI and launch the instance into the public subnet with a public IP. SSH into the instance and download/extract your network weights and reference data of interest to the attached volume at /fsx/aws-rosettafold-ref-data (i.e. Installation steps 3 and 5 from the RoseTTAFold public repository)

Option 2

Create a new S3 bucket in your region of interest. Spin up an EC2 instance in a public subnet in the same region and use this to download and extract the network weights and reference data. Once this is complete, copy the extracted data to S3. In the AWS Console, navigate to FSx > File Systems and select the FSx for Lustre file system created above. Link this file system to your new S3 bucket using these instructions. Specify /aws-rosettafold-ref-data as the file system path when creating the data repository association. This is a good option if you want to create multiple stacks without downloading and extracting the reference data multiple times. Note that the first job you submit using this data repository will cause the FSx file system to transfer and compress 3 TB of reference data from S3. This process may require as many as six hours to complete. Alternatively, you can preload files into the file system by following these instructions.

Once this is complete, your FSx for Lustre file system should look like this (file sizes are uncompressed):

/fsx
└── /aws-rosettafold-ref-data
    ├── /bfd
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_a3m.ffdata (1.4 TB)
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_a3m.ffindex (1.7 GB)
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_cs219.ffdata (15.7 GB)
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_cs219.ffindex (1.6 GB)
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_hhm.ffdata (304.4 GB)
    │   └── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_hhm.ffindex (123.6 MB)
    ├── /pdb100_2021Mar03
    │   ├── LICENSE (20.4 KB)
    │   ├── pdb100_2021Mar03_a3m.ffdata (633.9 GB)
    │   ├── pdb100_2021Mar03_a3m.ffindex (3.9 MB)
    │   ├── pdb100_2021Mar03_cs219.ffdata (41.8 MB)
    │   ├── pdb100_2021Mar03_cs219.ffindex (2.8 MB)
    │   ├── pdb100_2021Mar03_hhm.ffdata (6.8 GB)
    │   ├── pdb100_2021Mar03_hhm.ffindex (3.4 GB)
    │   ├── pdb100_2021Mar03_pdb.ffdata (26.2 GB)
    │   └── pdb100_2021Mar03_pdb.ffindex (3.7 MB)
    ├── /UniRef30_2020_06
    │   ├── UniRef30_2020_06_a3m.ffdata (139.6 GB)
    │   ├── UniRef30_2020_06_a3m.ffindex (671.0 MG)
    │   ├── UniRef30_2020_06_cs219.ffdata (6.0 GB)
    │   ├── UniRef30_2020_06_cs219.ffindex (605.0 MB)
    │   ├── UniRef30_2020_06_hhm.ffdata (34.1 GB)
    │   ├── UniRef30_2020_06_hhm.ffindex (19.4 MB)
    │   └── UniRef30_2020_06.md5sums (379.0 B)
    └── /weights
        ├── RF2t.pt (126 MB KB)
        ├── Rosetta-DL_LICENSE.txt (3.1 KB)
        ├── RoseTTAFold_e2e.pt (533 MB)
        └── RoseTTAFold_pyrosetta.pt (506 MB)

  1. Clone the CodeCommit repository created by CloudFormation to a Jupyter Notebook environment of your choice.
  2. Use the AWS-RoseTTAFold.ipynb and CASP14-Analysis.ipynb notebooks to submit protein sequences for analysis.

Architecture

AWS-RoseTTAFold Architecture

This project creates two computing environments in AWS Batch to run the "end-to-end" protein folding workflow in RoseTTAFold. The first of these uses the optimal mix of c4, m4, and r4 spot instance types based on the vCPU and memory requirements specified in the Batch job. The second environment uses g4dn on-demand instances to balance performance, availability, and cost.

A scientist can create structure prediction jobs using one of the two included Jupyter notebooks. AWS-RoseTTAFold.ipynb demonstrates how to submit a single analysis job and view the results. CASP14-Analysis.ipynb demonstrates how to submit multiple jobs at once using the CASP14 target list. In both of these cases, submitting a sequence for analysis creates two Batch jobs, one for data preparation (using the CPU computing environment) and a second, dependent job for structure prediction (using the GPU computing environment).

Both the data preparation and structure prediction use the same Docker image for execution. This image, based on the public Nvidia CUDA image for Ubuntu 20, includes the v1.1 release of the public RoseTTAFold repository, as well as additional scripts for integrating with AWS services. CodeBuild will automatically download this container definition and build the required image during stack creation. However, end users can make changes to this image by pushing to the CodeCommit repository included in the stack. For example, users could replace the included MSA algorithm (hhblits) with an alternative like MMseqs2 or replace the RoseTTAFold network with an alternative like AlphaFold 2 or Uni-Fold.

Costs

This workload costs approximately $217 per month to maintain, plus another $2.56 per job.

Deployment

AWS-RoseTTAFold Dewployment

Running the CloudFormation template at config/cfn.yaml creates the following resources in the specified availability zone:

  1. A new VPC with a private subnet, public subnet, NAT gateway, internet gateway, elastic IP, route tables, and S3 gateway endpoint.
  2. A FSx Lustre file system with 1.2 TiB of storage and 120 MB/s throughput capacity. This file system can be linked to an S3 bucket for loading the required reference data when the first job executes.
  3. An EC2 launch template for mounting the FSX file system to Batch compute instances.
  4. A set of AWS Batch compute environments, job queues, and job definitions for running the CPU-dependent data prep job and a second for the GPU-dependent prediction job.
  5. CodeCommit, CodeBuild, CodePipeline, and ECR resources for building and publishing the Batch container image. When CloudFormation creates the CodeCommit repository, it populates it with a zipped version of this repository stored in a public S3 bucket. CodeBuild uses this repository as its source and adds additional code from release 1.1 of the public RoseTTAFold repository. CodeBuild then publishes the resulting container image to ECR, where Batch jobs can use it as needed.

Licensing

This library is licensed under the MIT-0 License. See the LICENSE file for more information.

The University of Washington has made the code and data in the RoseTTAFold public repository available under an MIT license. However, the model weights used for prediction are only available for internal, non-profit, non-commercial research use. For information, please see the full license agreement and contact the University of Washington for details.

Security

See CONTRIBUTING for more information.

More Information

Owner
AWS Samples
AWS Samples
ARKHAM X GOD MULTISPAM BOT

ARKHAM-X-GOD-MULTISPAM-BOT 𝗗𝗘𝗣𝗟𝗢𝗬 𝗨𝗣𝗧𝗢 30 𝗕𝗢𝗧𝗦 𝗜𝗡 𝗔 𝗦𝗜𝗡𝗚𝗟?

ArkhamXGod 2 Jan 08, 2022
All in one Search Engine Scrapper for used by API or Python Module. It's Free!

All in one Search Engine Scrapper for used by API or Python Module. How to use: Video Documentation Senginta is All in one Search Engine Scrapper. Wit

33 Nov 21, 2022
An API that allows you to get full information about TikTok videos

TikTok-API An API that allows you to get full information about TikTok videos without using any third party sources and only the TikTok API. ##API onl

FC 13 Dec 20, 2021
Instagram auto reporting tool 100% working

INSTA REPORTER Instagram auto reporting tool 100% working Description this tool is made by Guccifer Shubham (shubhushubhu99) and by using this tool yo

Guccifer Shubham 26 Dec 28, 2022
Simulation artifacts, core components and configuration files to integrate AWS DeepRacer device with ROS Navigation stack.

AWS DeepRacer Overview The AWS DeepRacer Evo vehicle is a 1/18th scale Wi-Fi enabled 4-wheel ackermann steering platform that features two RGB cameras

AWS DeepRacer 31 Nov 21, 2022
Orca is an extensive and extendable Python 3.x library for the Discord API.

Orca is an extensive and extendable Python 3.x library for the Discord API.

RPS 4 Apr 03, 2022
It connects to Telegram's API. It generates JSON files containing channel's data, including channel's information and posts.

It connects to Telegram's API. It generates JSON files containing channel's data, including channel's information and posts. You can search for a specific channel, or a set of channels provided in a

Esteban Ponce de Leon 75 Jan 02, 2023
Shows VRML team stats of all players in your pubs

VRML Team Stat Searcher Displays Team Name, Team Rank (Worldwide), and tier of all the players in your pubs. GUI WIP: Username search works & pub name

Hamish 2 Dec 22, 2022
Quack-SMS-BOMBER - Quack Toolkit By IkigaiHack

Quack Toolkit By IkigaiHack About Quack Toolkit Quack Toolkit is a set of tools

Marcel 2 Aug 19, 2022
Verkehrsunfälle in Deutschland, aufgeschlüsselt nach Verkehrsmittel des Hauptverursachers und Nebenverursachers

How-To Einfach ./main.py ausführen mit der Statistik-Datei aus dem Ordner "Unfälle_mit_mehreren_Beteiligten" als erstem Argument. Requirements python,

4 Oct 12, 2022
Discord Rpc With Python And 2 Buttons

Discord-RPC-With-Python- Discord Rpc With Python And 2 Buttons Packages pypresence time Required Programs Python Latest Version Random IDE Discord :P

Kaz 4 Dec 12, 2021
Facebook fishing on telegram bot

Facebook-fishing Facebook fishing on telegram bot تثبيت الاداة pkg update -y pkg upgrade -y pkg install git -y pkg install python -y git clone https:/

sadamalsharabi 7 Oct 18, 2022
Anime Streams Scrapper for Telegram Publicly Available for everyone to use

AniRocks Project Structure: ╭─ bot ├──── plugins: directory stored all the plugins ├──── utils: a directory of Utilities to help bot Client to create

ポキ 11 Oct 28, 2022
Whatsapp-bot - Whatsapp chatbot build with python and twilio

Whatsapp-bot This is a Whatsapp Chatbot that responds with quotes, reply owners

arinzejustinng 1 Jan 14, 2022
A simple python discord bot which give you a yogurt brand name, basing on a large database often updated.

YaourtBot A discord simple bot by Lopinosaurus Before using this code : ・Move env file to .env ・Change the channel ID on line 38 of bot.py to your #pi

The only one bunny who can dev. 0 May 09, 2022
Discord-RAID-Tool - Hacks/tools

How to use Python must be installed run install-config If you dont have python installed, download python 3.7.6 and make sure you click on the 'ADD TO

1 Jan 01, 2022
A Python API For Questionnaire

Инструкция по разворачиванию приложения Окружение проекта: python 3.8 Django 2.2.10 djangorestframework Склонируйте репозиторий с помощью git: git clo

2 Feb 14, 2022
💬 Send iMessages using Python through the Shortcuts app.

py-imessage-shortcuts Send iMessages using Python through the Shortcuts app. Requires macOS Monterey (macOS 12) or later. Compatible with Apple Silico

Kevin Schaich 10 Nov 30, 2022
Telegram bot untuk mencari jawaban dibrainly, support inline juga

Brainly-Telebot Bot Untuk Mencari Jawaban Dibrainly Jika ingin clone. Boleh kok Dibuat dengan python menggunakan MTproto Library. Yaitu Pyrogram Bot y

... 7 Mar 17, 2022
A telegram bot writen in python for mirroring files on the internet to Google Drive

owner of this repo :- AYUSH contact me :- AYUSH Slam Mirror Bot This is a telegram bot writen in python for mirroring files on the internet to our bel

Thanusara Pasindu 1 Nov 21, 2021