Infrastructure template and Jupyter notebooks for running RoseTTAFold on AWS Batch.

Overview

AWS RoseTTAFold

Infrastructure template and Jupyter notebooks for running RoseTTAFold on AWS Batch.

Overview

Proteins are large biomolecules that play an important role in the body. Knowing the physical structure of proteins is key to understanding their function. However, it can be difficult and expensive to determine the structure of many proteins experimentally. One alternative is to predict these structures using machine learning algorithms. Several high-profile research teams have released such algorithms, including AlphaFold 2 (from DeepMind) and RoseTTAFold (From the Baker lab at the University of Washington). Their work was important enough for Science magazine to name it the "2021 Breakthrough of the Year".

Both AlphaFold 2 and RoseTTAFold use a multi-track transformer architecture trained on known protein templates to predict the structure of unknown peptide sequences. These predictions are heavily GPU-dependent and take anywhere from minutes to days to complete. The input features for these predictions include multiple sequence alignment (MSA) data. MSA algorithms are CPU-dependent and can themselves require several hours of processing time.

Running both the MSA and structure prediction steps in the same computing environment can be cost inefficient, because the expensive GPU resources required for the prediction sit unused while the MSA step runs. Instead, using a high performance computing (HPC) service like AWS Batch allows us to run each step as a containerized job with the best fit of CPU, memory, and GPU resources.

This project demonstrates how to provision and use AWS services for running the RoseTTAFold protein folding algorithm on AWS Batch.

Setup

  1. Log into the AWS Console.

  2. Click on Launch Stack:

    Launch Stack

  3. For Stack Name, enter a unique name.

  4. Select an availability zone from the dropdown menu.

  5. Acknowledge that AWS CloudFormation might create IAM resources and then click Create Stack.

  6. It will take 10 minutes for CloudFormation to create the stack and another 15 minutes for CodeBuild to build and publish the container (25 minutes total). Please wait for both of these tasks to finish before you submit any analysis jobs.

  7. Download and extract the RoseTTAFold network weights (under Rosetta-DL Software license), and sequence and structure databases to the newly-created FSx for Lustre file system. There are two ways to do this:

Option 1

In the AWS Console, navigate to EC2 > Launch Templates, select the template beginning with "aws-rosettafold-launch-template-", and then Actions > Launch instance from template. Select the Amazon Linux 2 AMI and launch the instance into the public subnet with a public IP. SSH into the instance and download/extract your network weights and reference data of interest to the attached volume at /fsx/aws-rosettafold-ref-data (i.e. Installation steps 3 and 5 from the RoseTTAFold public repository)

Option 2

Create a new S3 bucket in your region of interest. Spin up an EC2 instance in a public subnet in the same region and use this to download and extract the network weights and reference data. Once this is complete, copy the extracted data to S3. In the AWS Console, navigate to FSx > File Systems and select the FSx for Lustre file system created above. Link this file system to your new S3 bucket using these instructions. Specify /aws-rosettafold-ref-data as the file system path when creating the data repository association. This is a good option if you want to create multiple stacks without downloading and extracting the reference data multiple times. Note that the first job you submit using this data repository will cause the FSx file system to transfer and compress 3 TB of reference data from S3. This process may require as many as six hours to complete. Alternatively, you can preload files into the file system by following these instructions.

Once this is complete, your FSx for Lustre file system should look like this (file sizes are uncompressed):

/fsx
└── /aws-rosettafold-ref-data
    ├── /bfd
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_a3m.ffdata (1.4 TB)
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_a3m.ffindex (1.7 GB)
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_cs219.ffdata (15.7 GB)
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_cs219.ffindex (1.6 GB)
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_hhm.ffdata (304.4 GB)
    │   └── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_hhm.ffindex (123.6 MB)
    ├── /pdb100_2021Mar03
    │   ├── LICENSE (20.4 KB)
    │   ├── pdb100_2021Mar03_a3m.ffdata (633.9 GB)
    │   ├── pdb100_2021Mar03_a3m.ffindex (3.9 MB)
    │   ├── pdb100_2021Mar03_cs219.ffdata (41.8 MB)
    │   ├── pdb100_2021Mar03_cs219.ffindex (2.8 MB)
    │   ├── pdb100_2021Mar03_hhm.ffdata (6.8 GB)
    │   ├── pdb100_2021Mar03_hhm.ffindex (3.4 GB)
    │   ├── pdb100_2021Mar03_pdb.ffdata (26.2 GB)
    │   └── pdb100_2021Mar03_pdb.ffindex (3.7 MB)
    ├── /UniRef30_2020_06
    │   ├── UniRef30_2020_06_a3m.ffdata (139.6 GB)
    │   ├── UniRef30_2020_06_a3m.ffindex (671.0 MG)
    │   ├── UniRef30_2020_06_cs219.ffdata (6.0 GB)
    │   ├── UniRef30_2020_06_cs219.ffindex (605.0 MB)
    │   ├── UniRef30_2020_06_hhm.ffdata (34.1 GB)
    │   ├── UniRef30_2020_06_hhm.ffindex (19.4 MB)
    │   └── UniRef30_2020_06.md5sums (379.0 B)
    └── /weights
        ├── RF2t.pt (126 MB KB)
        ├── Rosetta-DL_LICENSE.txt (3.1 KB)
        ├── RoseTTAFold_e2e.pt (533 MB)
        └── RoseTTAFold_pyrosetta.pt (506 MB)

  1. Clone the CodeCommit repository created by CloudFormation to a Jupyter Notebook environment of your choice.
  2. Use the AWS-RoseTTAFold.ipynb and CASP14-Analysis.ipynb notebooks to submit protein sequences for analysis.

Architecture

AWS-RoseTTAFold Architecture

This project creates two computing environments in AWS Batch to run the "end-to-end" protein folding workflow in RoseTTAFold. The first of these uses the optimal mix of c4, m4, and r4 spot instance types based on the vCPU and memory requirements specified in the Batch job. The second environment uses g4dn on-demand instances to balance performance, availability, and cost.

A scientist can create structure prediction jobs using one of the two included Jupyter notebooks. AWS-RoseTTAFold.ipynb demonstrates how to submit a single analysis job and view the results. CASP14-Analysis.ipynb demonstrates how to submit multiple jobs at once using the CASP14 target list. In both of these cases, submitting a sequence for analysis creates two Batch jobs, one for data preparation (using the CPU computing environment) and a second, dependent job for structure prediction (using the GPU computing environment).

Both the data preparation and structure prediction use the same Docker image for execution. This image, based on the public Nvidia CUDA image for Ubuntu 20, includes the v1.1 release of the public RoseTTAFold repository, as well as additional scripts for integrating with AWS services. CodeBuild will automatically download this container definition and build the required image during stack creation. However, end users can make changes to this image by pushing to the CodeCommit repository included in the stack. For example, users could replace the included MSA algorithm (hhblits) with an alternative like MMseqs2 or replace the RoseTTAFold network with an alternative like AlphaFold 2 or Uni-Fold.

Costs

This workload costs approximately $217 per month to maintain, plus another $2.56 per job.

Deployment

AWS-RoseTTAFold Dewployment

Running the CloudFormation template at config/cfn.yaml creates the following resources in the specified availability zone:

  1. A new VPC with a private subnet, public subnet, NAT gateway, internet gateway, elastic IP, route tables, and S3 gateway endpoint.
  2. A FSx Lustre file system with 1.2 TiB of storage and 120 MB/s throughput capacity. This file system can be linked to an S3 bucket for loading the required reference data when the first job executes.
  3. An EC2 launch template for mounting the FSX file system to Batch compute instances.
  4. A set of AWS Batch compute environments, job queues, and job definitions for running the CPU-dependent data prep job and a second for the GPU-dependent prediction job.
  5. CodeCommit, CodeBuild, CodePipeline, and ECR resources for building and publishing the Batch container image. When CloudFormation creates the CodeCommit repository, it populates it with a zipped version of this repository stored in a public S3 bucket. CodeBuild uses this repository as its source and adds additional code from release 1.1 of the public RoseTTAFold repository. CodeBuild then publishes the resulting container image to ECR, where Batch jobs can use it as needed.

Licensing

This library is licensed under the MIT-0 License. See the LICENSE file for more information.

The University of Washington has made the code and data in the RoseTTAFold public repository available under an MIT license. However, the model weights used for prediction are only available for internal, non-profit, non-commercial research use. For information, please see the full license agreement and contact the University of Washington for details.

Security

See CONTRIBUTING for more information.

More Information

Owner
AWS Samples
AWS Samples
An example of a chatbot with a number-based menu that can be used as a starting point for a project.

NumMenu Bot NumMenu Bot is an example chatbot showing a way to design a number-based menu assistant with Rasa. This type of bot is very useful on plat

Derguene 19 Nov 14, 2022
Spotify Web API client for Python 3

Welcome to the GitHub repository of Tekore! We provide a client for the Spotify Web API for Python, complete with all available endpoints and authenti

Felix Hildén 186 Dec 22, 2022
just another discord bot

boredbot just another discord bot made to learn python this bots main function is to cache teams meeting links and send them right before the classes

macky 3 Sep 03, 2021
A simple Python TDLib wrapper

Telegram Forwarder App Description pywtdlib (Python Wrapper TDLib) is a simple synchronous Python wrapper that makes you easy to create new Python Tel

Álvaro Fernández 2 Jan 04, 2023
PyFacebook

== PyFacebook == PyFacebook is a Python client library for the Facebook API. Samuel Cormier-Iijima ( Samuel Cormier-Iijima 573 Dec 20, 2022

Python script to delete old / embarrassing tweets.

Delete Tweets Do you have hundreds of embarrassing tweets on your Twitter profile, that you tweeted over a decade ago as an innocent high schooler, th

Linda Zheng 9 Nov 26, 2022
Código que verifica se o grafo é Hamiltoniano (Em Python)

Código para encontrar um ciclo de Hamilton em um dado grafo e a partir daí verificar se o grafo é hamiltoniano. Um ciclo hamiltoniano é um ciclo gerad

Hemili Beatriz 1 Jan 08, 2022
A Telegram Bot which notifies the user when a vaccine is available on CoWin Platform.

Cowin Vaccine Availability Notifier Telegram Bot A bot that notifies the available vaccines at given district in realtime. Introduction • Requirements

Arham Shah 7 Jul 31, 2021
ML-Test-Client

ML-Test-Client Introduction What is this? This Test Client App is to be used to crowd-test machine learning models with the goal of finding the best c

11 Jul 15, 2022
The Sue Gray Alert System was a 5 minute project that just beeps every time a new article is updated or published on Gov.UK's news pages.

The Sue Gray Alert System was a 5 minute project that just beeps every time a new article is updated or published on Gov.UK's news pages.

Dafydd 1 Jan 31, 2022
A bot framework for Reddit to manage threads, wiki pages, widgets, menus and more.

Sub Manager Sub Manager is a bot framework for Reddit to automate a variety of tasks on one or more subreddits, and can be configured and run without

r/SpaceX 3 Aug 26, 2022
Python wrapper for Revolt API

defectio is a direct implementation of the entire Revolt API and provides a way to authenticate and start communicating with Revolt servers. Similar interface to discord.py

Leon Bowie 26 Sep 18, 2022
CLI tool that checks who does and who does not follow you back on Instagram

CLI tool that checks who does and who does not follow you back on Instagram. It also checks who you don't follow back on Instagram.

Ayushman Roy 3 Dec 02, 2022
A simple Discord bot that notifies users of new Abitti versions

A simple Discord bot that notifies users of new Abitti versions. New features might be added later on. If you have good ideas, feel free to do a PR.

1 Feb 11, 2022
Kodi script for proper Australian weather data

Kodi Oz Weather weather.ozweather Script for Kodi for high quality Australian weather data sourced directly from the BOM. Available from the Kodi offi

Jeremy Daalder 5 Nov 24, 2022
A pypi package that helps in generating discord bots.

A pypi package that helps in generating discord bots.

KlevrHQ 3 Nov 17, 2021
PlexAutoSkip - Automatically skip content in Plex

PlexAutoSkip Automatically skip tagged content in Plex A background python scrip

Michael Higgins 97 Dec 21, 2022
Forked from 0x36 on github who then rewrote the ida_kernelcache python framework

Forked from 0x36 on github who then rewrote the ida_kernelcache python framework. Sadly 0x36 doesn't seem to have push updates to the project and it took me a very long time to figure out why this wa

Turnerhackz1 6 Dec 13, 2022
A simple google translator telegram bot

Translator-Bot A simple google translator telegram bot Please fork this repository don't import code Made with Python3 (C) @FayasNoushad Copyright per

Fayas Noushad 14 Nov 12, 2022
42-event-notifier - 42 Event notifier using 42API and Github Actions

42 Event Notifier 42서울 Agenda에 새로운 이벤트가 등록되면 알려드립니다! 현재는 Github Issue로 등록되므로 상단

6 May 16, 2022