Infrastructure template and Jupyter notebooks for running RoseTTAFold on AWS Batch.

Overview

AWS RoseTTAFold

Infrastructure template and Jupyter notebooks for running RoseTTAFold on AWS Batch.

Overview

Proteins are large biomolecules that play an important role in the body. Knowing the physical structure of proteins is key to understanding their function. However, it can be difficult and expensive to determine the structure of many proteins experimentally. One alternative is to predict these structures using machine learning algorithms. Several high-profile research teams have released such algorithms, including AlphaFold 2 (from DeepMind) and RoseTTAFold (From the Baker lab at the University of Washington). Their work was important enough for Science magazine to name it the "2021 Breakthrough of the Year".

Both AlphaFold 2 and RoseTTAFold use a multi-track transformer architecture trained on known protein templates to predict the structure of unknown peptide sequences. These predictions are heavily GPU-dependent and take anywhere from minutes to days to complete. The input features for these predictions include multiple sequence alignment (MSA) data. MSA algorithms are CPU-dependent and can themselves require several hours of processing time.

Running both the MSA and structure prediction steps in the same computing environment can be cost inefficient, because the expensive GPU resources required for the prediction sit unused while the MSA step runs. Instead, using a high performance computing (HPC) service like AWS Batch allows us to run each step as a containerized job with the best fit of CPU, memory, and GPU resources.

This project demonstrates how to provision and use AWS services for running the RoseTTAFold protein folding algorithm on AWS Batch.

Setup

  1. Log into the AWS Console.

  2. Click on Launch Stack:

    Launch Stack

  3. For Stack Name, enter a unique name.

  4. Select an availability zone from the dropdown menu.

  5. Acknowledge that AWS CloudFormation might create IAM resources and then click Create Stack.

  6. It will take 10 minutes for CloudFormation to create the stack and another 15 minutes for CodeBuild to build and publish the container (25 minutes total). Please wait for both of these tasks to finish before you submit any analysis jobs.

  7. Download and extract the RoseTTAFold network weights (under Rosetta-DL Software license), and sequence and structure databases to the newly-created FSx for Lustre file system. There are two ways to do this:

Option 1

In the AWS Console, navigate to EC2 > Launch Templates, select the template beginning with "aws-rosettafold-launch-template-", and then Actions > Launch instance from template. Select the Amazon Linux 2 AMI and launch the instance into the public subnet with a public IP. SSH into the instance and download/extract your network weights and reference data of interest to the attached volume at /fsx/aws-rosettafold-ref-data (i.e. Installation steps 3 and 5 from the RoseTTAFold public repository)

Option 2

Create a new S3 bucket in your region of interest. Spin up an EC2 instance in a public subnet in the same region and use this to download and extract the network weights and reference data. Once this is complete, copy the extracted data to S3. In the AWS Console, navigate to FSx > File Systems and select the FSx for Lustre file system created above. Link this file system to your new S3 bucket using these instructions. Specify /aws-rosettafold-ref-data as the file system path when creating the data repository association. This is a good option if you want to create multiple stacks without downloading and extracting the reference data multiple times. Note that the first job you submit using this data repository will cause the FSx file system to transfer and compress 3 TB of reference data from S3. This process may require as many as six hours to complete. Alternatively, you can preload files into the file system by following these instructions.

Once this is complete, your FSx for Lustre file system should look like this (file sizes are uncompressed):

/fsx
└── /aws-rosettafold-ref-data
    ├── /bfd
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_a3m.ffdata (1.4 TB)
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_a3m.ffindex (1.7 GB)
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_cs219.ffdata (15.7 GB)
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_cs219.ffindex (1.6 GB)
    │   ├── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_hhm.ffdata (304.4 GB)
    │   └── bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt_hhm.ffindex (123.6 MB)
    ├── /pdb100_2021Mar03
    │   ├── LICENSE (20.4 KB)
    │   ├── pdb100_2021Mar03_a3m.ffdata (633.9 GB)
    │   ├── pdb100_2021Mar03_a3m.ffindex (3.9 MB)
    │   ├── pdb100_2021Mar03_cs219.ffdata (41.8 MB)
    │   ├── pdb100_2021Mar03_cs219.ffindex (2.8 MB)
    │   ├── pdb100_2021Mar03_hhm.ffdata (6.8 GB)
    │   ├── pdb100_2021Mar03_hhm.ffindex (3.4 GB)
    │   ├── pdb100_2021Mar03_pdb.ffdata (26.2 GB)
    │   └── pdb100_2021Mar03_pdb.ffindex (3.7 MB)
    ├── /UniRef30_2020_06
    │   ├── UniRef30_2020_06_a3m.ffdata (139.6 GB)
    │   ├── UniRef30_2020_06_a3m.ffindex (671.0 MG)
    │   ├── UniRef30_2020_06_cs219.ffdata (6.0 GB)
    │   ├── UniRef30_2020_06_cs219.ffindex (605.0 MB)
    │   ├── UniRef30_2020_06_hhm.ffdata (34.1 GB)
    │   ├── UniRef30_2020_06_hhm.ffindex (19.4 MB)
    │   └── UniRef30_2020_06.md5sums (379.0 B)
    └── /weights
        ├── RF2t.pt (126 MB KB)
        ├── Rosetta-DL_LICENSE.txt (3.1 KB)
        ├── RoseTTAFold_e2e.pt (533 MB)
        └── RoseTTAFold_pyrosetta.pt (506 MB)

  1. Clone the CodeCommit repository created by CloudFormation to a Jupyter Notebook environment of your choice.
  2. Use the AWS-RoseTTAFold.ipynb and CASP14-Analysis.ipynb notebooks to submit protein sequences for analysis.

Architecture

AWS-RoseTTAFold Architecture

This project creates two computing environments in AWS Batch to run the "end-to-end" protein folding workflow in RoseTTAFold. The first of these uses the optimal mix of c4, m4, and r4 spot instance types based on the vCPU and memory requirements specified in the Batch job. The second environment uses g4dn on-demand instances to balance performance, availability, and cost.

A scientist can create structure prediction jobs using one of the two included Jupyter notebooks. AWS-RoseTTAFold.ipynb demonstrates how to submit a single analysis job and view the results. CASP14-Analysis.ipynb demonstrates how to submit multiple jobs at once using the CASP14 target list. In both of these cases, submitting a sequence for analysis creates two Batch jobs, one for data preparation (using the CPU computing environment) and a second, dependent job for structure prediction (using the GPU computing environment).

Both the data preparation and structure prediction use the same Docker image for execution. This image, based on the public Nvidia CUDA image for Ubuntu 20, includes the v1.1 release of the public RoseTTAFold repository, as well as additional scripts for integrating with AWS services. CodeBuild will automatically download this container definition and build the required image during stack creation. However, end users can make changes to this image by pushing to the CodeCommit repository included in the stack. For example, users could replace the included MSA algorithm (hhblits) with an alternative like MMseqs2 or replace the RoseTTAFold network with an alternative like AlphaFold 2 or Uni-Fold.

Costs

This workload costs approximately $217 per month to maintain, plus another $2.56 per job.

Deployment

AWS-RoseTTAFold Dewployment

Running the CloudFormation template at config/cfn.yaml creates the following resources in the specified availability zone:

  1. A new VPC with a private subnet, public subnet, NAT gateway, internet gateway, elastic IP, route tables, and S3 gateway endpoint.
  2. A FSx Lustre file system with 1.2 TiB of storage and 120 MB/s throughput capacity. This file system can be linked to an S3 bucket for loading the required reference data when the first job executes.
  3. An EC2 launch template for mounting the FSX file system to Batch compute instances.
  4. A set of AWS Batch compute environments, job queues, and job definitions for running the CPU-dependent data prep job and a second for the GPU-dependent prediction job.
  5. CodeCommit, CodeBuild, CodePipeline, and ECR resources for building and publishing the Batch container image. When CloudFormation creates the CodeCommit repository, it populates it with a zipped version of this repository stored in a public S3 bucket. CodeBuild uses this repository as its source and adds additional code from release 1.1 of the public RoseTTAFold repository. CodeBuild then publishes the resulting container image to ECR, where Batch jobs can use it as needed.

Licensing

This library is licensed under the MIT-0 License. See the LICENSE file for more information.

The University of Washington has made the code and data in the RoseTTAFold public repository available under an MIT license. However, the model weights used for prediction are only available for internal, non-profit, non-commercial research use. For information, please see the full license agreement and contact the University of Washington for details.

Security

See CONTRIBUTING for more information.

More Information

Owner
AWS Samples
AWS Samples
Docker image for epicseven gvg qq chatbot based on Xunbot

XUN_Langskip XUN 是一个基于 NoneBot 和 酷Q 的功能型QQ机器人,目前提供了音乐点播、音乐推荐、天气查询、RSSHub订阅、使用帮助、识图、识番、搜番、上车、磁力搜索、地震速报、计算、日语词典、翻译、自我检查,权限等级功能,由于是为了完成自己在群里的承诺,一时兴起才做的,所

Xavier Xiong 2 Jun 08, 2022
Terraform Cloud CLI for Managing Workspace Terraform Versions

Terraform Cloud Version Manager This tiny script makes it easy to update the Terraform Version on all of the Workspaces inside Terraform Cloud. It wil

Robert Hafner 1 Jan 07, 2022
Spore API wrapper written in Python

A wrapper for the Spore API that simplifies and complements its functionality

1 Nov 25, 2021
A simple Telegram bot that can broadcast messages and media to the bot subscribers. with mongo DB support

𝘽𝙧𝙤𝙖𝙙𝙘𝙖𝙨𝙩 𝘽𝙤𝙩 A simple Telegram bot that can broadcast messages and media to the bot subscribers using MongoDB. Features Support mongodb.c

N A C BOTS 70 Jan 02, 2023
Python implementation of Spotify's authorization flow.

Spotify API Apps 🎷 🎶 🎼 This repository consists of many strange codes that make you think why the hell this guy doing this. Well... I got some reas

5 Dec 17, 2021
Flask-SQLAlchemy API for daisuki-web

💟 Anime Daisuki! API API de animes com cadastro de usuários. O usuário autenticado pode avaliar e favoritar animes, comentar episódios e verificar o

Paulo Thor 1 Nov 04, 2021
Criando Lambda Functions para Ingerir Dados de APIs com AWS CDK

LIVE001 - AWS Lambda para Ingerir Dados de APIs Fazer o deploy de uma função lambda com infraestrutura como código Lambda vai numa API externa e extra

Andre Sionek 12 Nov 20, 2022
Represents a Lavalink client used to manage nodes and connections.

lavaplayer Represents a Lavalink client used to manage nodes and connections. setup pip install lavaplayer setup lavalink you need to java 11* LTS or

HazemMeqdad 37 Nov 21, 2022
Trading bot that uses Elon Musk`s tweets to know when to buy cryptocurrency.

Elonbot Trading bot that uses Elon Musk`s tweets to know when to buy cryptocurrency. Here is how it works: Subscribes to someone's (elonmusk?) tweets

153 Dec 23, 2022
Python On WhatsApp - Run your python codes on whatsapp along with talking to a chatbot

Python On WhatsApp Run your python codes on whatsapp along with talking to a chatbot This is a small python project to run python on whatsapp. and i c

Prajjwal Pathak 32 Dec 30, 2022
Tiktok-bot - A tiktok bot with python

Install the requirements pip install selenium pip install pyfiglet==0.7.5 How ca

Ukis 5 Aug 23, 2022
An Async Bot/API wrapper for Twitch made in Python.

TwitchIO is an asynchronous Python wrapper around the Twitch API and IRC, with a powerful command extension for creating Twitch Chat Bots. TwitchIO co

TwitchIO 590 Jan 03, 2023
This script books automatically a slot on Doctolib in one of the public vaccination centers in Berlin.

BOOKING IN BERLINS VACCINATION CENTERS This python script books automatically a slot on Doctolib in one of the public vaccination centers in Berlin. T

17 Jan 13, 2022
A simple discord tool that translates english to either spanish, german or french and sends it. Free to rework but please give me credit.

discord-translator A simple discord tool that translates english to either spanish, german or french and sends it. Free to rework but please give me c

TrolledTooHard 2 Oct 04, 2021
✨ A Telegram mirror/leech bot By SparkXcloud Group ✨

SparkXcloud-Gdrive-MirrorBot SparkXcloud-Gdrive-MirrorBot is a multipurpose Telegram Bot writen in Python for mirroring files on the Internet to our b

119 Oct 23, 2022
Use Node JS Keywords In Python!!!

Use Node JS Keywords In Python!!!

Sancho Godinho 1 Oct 23, 2021
Volt is yet another discord api wrapper for Python. It supports python 3.8 +

Volt Volt is yet another discord api wrapper for Python. It supports python 3.8 + How to install [Currently Not Supported.] pip install volt.py Speed

Minjun Kim (Lapis0875) 11 Nov 21, 2022
A wrapper for The Movie Database API v3 and v4 that only uses the read access token (not api key).

fulltmdb A wrapper for The Movie Database API v3 and v4 that only uses the read access token (not api key). Installation Use the package manager pip t

Jacob Hale 2 Sep 26, 2021
A AntiChannelBan Telegram Group Bot Open Source

AntiChannelBan This is a Anti Channel Ban Robots delete and ban message sent by channels Deployment Method Heroku 𝚂𝚄𝙿𝙿𝙾𝚁𝚃 CREDIT BrayDen Blaze

✗ BᵣₐyDₑₙ ✗ 14 May 02, 2022
A Rich renderable for viewing Multiple Sequence Alignments in the terminal.

rich-msa A simple module to render colorful Multiple Sequence Alignment with rich in the terminal. 🔧 Installing Install the rich-msa package directly

Martin Larralde 64 Dec 04, 2022