Deep reinforcement learning library built on top of Neural Network Libraries

Overview

License Build status

Deep Reinforcement Learning Library built on top of Neural Network Libraries

NNablaRL is a deep reinforcement learning library built on top of Neural Network Libraries that is intended to be used for research, development and production.

Installation

Installing NNablaRL is easy!

$ pip install nnabla-rl

NNablaRL only supports Python version >= 3.6 and NNabla version >= 1.17.

Enabling GPU accelaration (Optional)

NNablaRL algorithms run on CPU by default. To run the algorithm on GPU, first install nnabla-ext-cuda as follows. (Replace [cuda-version] depending on the CUDA version installed on your machine.)

$ pip install nnabla-ext-cuda[cuda-version]
# Example installation. Supposing CUDA 11.0 is installed on your machine.
$ pip install nnabla-ext-cuda110

After installing nnabla-ext-cuda, set the gpu id to run the algorithm on through algorithm's configuration.

import nnabla_rl.algorithms as A

config = A.DQNConfig(gpu_id=0) # Use gpu 0. If negative, will run on CPU.
dqn = A.DQN(env, config=config)
...

Features

Friendly API

NNablaRL has friendly Python APIs which enables to start training with only 3 lines of python code.

import nnabla_rl
import nnabla_rl.algorithms as A
from nnabla_rl.utils.reproductions import build_atari_env

env = build_atari_env("BreakoutNoFrameskip-v4") # 1
dqn = A.DQN(env)  # 2
dqn.train(env)  # 3

To get more details about NNablaRL, see documentation and examples.

Many builtin algorithms

Most of famous/SOTA deep reinforcement learning algorithms, such as DQN, SAC, BCQ, GAIL, etc., are implemented in NNablaRL. Implemented algorithms are carefully tested and evaluated. You can easily start training your agent using these verified implementations.

For the list of implemented algorithms see here.

You can also find the reproduction and evaluation results of each algorithm here.
Note that you may not get completely the same results when running the reproduction code on your computer. The result may slightly change depending on your machine, nnabla/nnabla-rl's package version, etc.

Seemless switching of online and offline training

In reinforcement learning, there are two main training procedures, online and offline, to train the agent. Online training is a training procedure that executes both data collection and network update alternately. Conversely, offline training is a training procedure that updates the network using only existing data. With NNablaRL, you can switch these two training procedures seemlessly. For example, as shown below, you can easily train a robot's controller online using simulated environment and finetune it offline with real robot dataset.

import nnabla_rl
import nnabla_rl.algorithms as A

simulator = get_simulator() # This is just an example. Assuming that simulator exists
dqn = A.DQN(simulator)
# train online for 1M iterations
dqn.train_online(simulator, total_iterations=1000000)

real_data = get_real_robot_data() # This is also an example. Assuming that you have real robot data
# fine tune the agent offline for 10k iterations using real data
dqn.train_offline(real_data, total_iterations=10000)

Getting started

Try below interactive demos to get started.
You can run it directly on Colab from the links in the table below.

Title Notebook Target RL task
Simple reinforcement learning training to get started Open In Colab Pendulum
Learn how to use training algorithms Open In Colab Pendulum
Learn how to use customized network model for training Open In Colab Mountain car
Learn how to use different network solver for training Open In Colab Pendulum
Learn how to use different replay buffer for training Open In Colab Pendulum
Learn how to use your own environment for training Open In Colab Customized environment
Atari game training example Open In Colab Atari games

Documentation

Full documentation is here.

Contribution guide

Any kind of contribution to NNablaRL is welcome! See the contribution guide for details.

License

NNablaRL is provided under the Apache License Version 2.0 license.

Comments
  • Update cem function interface

    Update cem function interface

    Updated interface of cross entropy function methods. The args, pop_size is now changed to sample_size. In addition, the given objective function to CEM function will be called with variable x which has (batch_size, sample_size, x_dim). This is different from previous interface. If you want to know the details, please see the function docs.

    opened by sbsekiguchi 1
  • Add implementation for RNN support and DRQN algorithm

    Add implementation for RNN support and DRQN algorithm

    Add RNN model support and DRQN algorithm.

    Following trainers will support RNN-model.

    • Q value-based trainers
    • Deterministic gradient and Soft policy trainers

    Other trainers can support RNN models in future but is not implemented in the initial release.

    See this paper for the details of the DRQN algorithm.

    opened by ishihara-y 1
  • Implement SACD

    Implement SACD

    This PR implements SAC-D algorithm. https://arxiv.org/abs/2206.13901

    These changes have been made:

    • New environments with factored reward functions have been added
      • FactoredLunarLanderContinuousV2NNablaRL-v1
      • FactoredAntV4NNablaRL-v1
      • FactoredHopperV4NNablaRL-v1
      • FactoredHalfCheetahV4NNablaRL-v1
      • FactoredWalker2dV4NNablaRL-v1
      • FactoredHumanoidV4NNablaRL-v1
    • SACD algorithms has been added
    • SoftQDTrainer has been added
    • _InfluenceMetricsEvaluator has been added
    • reproduction script has been added (not benchmarked yet)

    visualizing influence metrics

    import gym
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    import nnabla_rl.algorithms as A
    import nnabla_rl.hooks as H
    import nnabla_rl.writers as W
    from nnabla_rl.utils.evaluator import EpisodicEvaluator
    
    env = gym.make("FactoredLunarLanderContinuousV2NNablaRL-v1")
    eval_env = gym.make("FactoredLunarLanderContinuousV2NNablaRL-v1")
    
    evaluation_hook = H.EvaluationHook(
        eval_env,
        EpisodicEvaluator(run_per_evaluation=10),
        timing=5000,
        writer=W.FileWriter(outdir="logdir", file_prefix='evaluation_result'),
    )
    iteration_num_hook = H.IterationNumHook(timing=100)
    
    config = A.SACDConfig(gpu_id=0, reward_dimension=9)
    sacd = A.SACD(env, config=config)
    sacd.set_hooks([iteration_num_hook, evaluation_hook])
    sacd.train_online(env, total_iterations=100000)
    
    influence_history = []
    
    state = env.reset()
    while True:
        action = sacd.compute_eval_action(state)
        influence = sacd.compute_influence_metrics(state, action)
        influence_history.append(influence)
        state, _, done, _ = env.step(action)
        if done:
            break
    
    influence_history = np.array(influence_history)
    for i, label in enumerate(["position", "velocity", "angle", "left_leg", "right_leg", "main_eingine", "side_engine", "failure", "success"]):
        plt.plot(influence_history[:, i], label=label)
    plt.xlabel("step")
    plt.ylabel("influence metrics")
    plt.legend()
    plt.show()
    

    image

    sample animation

    sample

    opened by ishihara-y 0
  • Add gmm and Update gaussian

    Add gmm and Update gaussian

    Added gmm and gaussian of the numpy models. In addition, updated the gaussian distribution's API.

    The API change is like following:

    Previous :

    batch_size = 10
    output_dim = 10
    input_shape = (batch_size, output_dim)
    mean = np.zeros(shape=input_shape)
    sigma = np.ones(shape=input_shape) * 5.
    ln_var = np.log(sigma) * 2.
    distribution = D.Gaussian(mean, ln_var)
    # return nn.Variable
    assert isinstance(distribution.sample(), nn.Variable)
    

    Updated:

    batch_size = 10
    output_dim = 10
    input_shape = (batch_size, output_dim)
    mean = np.zeros(shape=input_shape)
    sigma = np.ones(shape=input_shape) * 5.
    ln_var = np.log(sigma) * 2.
    # You have to pass the nn.Variable if you want to get nn.Variable as all class method's return.
    distribution = D.Gaussian(nn.Variable.from_numpy_array(mean), nn.Variable.from_numpy_array(ln_var))
    assert isinstance(distribution.sample(), nn.Variable)
    
    # If you pass np.ndarray, then all class methods return np.ndarray
    # Currently, only support without batch shape (i.e. mean.shape = (dims,), ln_var.shape = (dims, dims)).
    distribution = D.Gaussian(mean[0], np.diag(ln_var[0]))  # without batch
    assert isinstance(distribution.sample(), np.ndarray)
    
    opened by sbsekiguchi 0
  • Support nnabla-browser

    Support nnabla-browser

    • [x] add MonitorWriter
    • [x] save computational graph as nntxt

    example

    import gym
    
    import nnabla_rl.algorithms as A
    import nnabla_rl.hooks as H
    import nnabla_rl.writers as W
    from nnabla_rl.utils.evaluator import EpisodicEvaluator
    
    # save training computational graph
    training_graph_hook = H.TrainingGraphHook(outdir="test")
    
    # evaluation hook with nnabla's Monitor
    eval_env = gym.make("Pendulum-v0")
    evaluator = EpisodicEvaluator(run_per_evaluation=10)
    evaluation_hook = H.EvaluationHook(
        eval_env,
        evaluator,
        timing=10,
        writer=W.MonitorWriter(outdir="test", file_prefix='evaluation_result'),
    )
    
    env = gym.make("Pendulum-v0")
    sac = A.SAC(env)
    sac.set_hooks([training_graph_hook, evaluation_hook])
    
    sac.train_online(env, total_iterations=100)
    

    image image

    opened by ishihara-y 0
  • Add iLQR and LQR

    Add iLQR and LQR

    Implementation of Linear Quadratic Regulator (LQR) and iterative LQR algorithms.

    Co-authored-by: Yu Ishihara [email protected] Co-authored-by: Shunichi Sekiguchi [email protected]

    opened by ishihara-y 0
  • Check np_random instance and use correct randint alternative

    Check np_random instance and use correct randint alternative

    I am not sure when this change was made but in some environment, gym.unwrapped.np_random returns Generator instead of RandomState.

    # in case of RandomState
    # this line works
    gym.unwrapped.np_random.rand_int(...)
    # in case of Generator
    # rand_int does not exist and we must use integers as an alternative
    gym.unwrapped.np_random.integers(...)
    

    This PR will fix this issue and chooses correct function for sampling integers.

    opened by ishihara-y 0
  • Add icra2018 qtopt

    Add icra2018 qtopt

    opened by sbsekiguchi 0
Releases(v0.12.0)
Owner
Sony
Sony Group Corporation
Sony
Random Geek Jokes REST API

Geek-Jokes A RESTful API to get random geek jokes written in Flask What is the Geek-Jokes-api? The Geek Jokes RESTful API lets you fetch a random geek

Sameer Kumar 84 Dec 15, 2022
A pre-attack hacker tool which aims to find out sensitives comments in HTML comment tag and to help on reconnaissance process

Find Out in Comment Find sensetive comment out in HTML ⚈ About This is a pre-attack hacker tool that searches for sensitives words in HTML comments ta

Pablo Emídio S.S 8 Dec 31, 2022
Simple integration between FastAPI and cloud authentication services (AWS Cognito, Auth0, Firebase Authentication).

FastAPI Cloud Auth fastapi-cloudauth standardizes and simplifies the integration between FastAPI and cloud authentication services (AWS Cognito, Auth0

tokusumi 255 Jan 07, 2023
A customizable, multilanguage Telegram shop bot with Telegram Payments support

Greed A customizable, multilanguage Telegram shop bot with Telegram Payments support! Demo Send a message to @greedtestbot on Telegram to view a demo

Stefano Pigozzi 328 Dec 29, 2022
A VCVideoPlayer Bot for Telegram made with 💞 By @TeamDeeCoDe

VC Video Player How To Host ✨ Heroku Deploy ✨ The easiest way to deploy this Bot is via Heroku. Credit 🔥 |🇮🇳 Louis |🇮🇳 Sammy |🇮🇳 Blaze |🇮🇳 S

TeamDeeCode 6 Feb 28, 2022
A bot framework for Reddit to manage threads, wiki pages, widgets, menus and more.

Sub Manager Sub Manager is a bot framework for Reddit to automate a variety of tasks on one or more subreddits, and can be configured and run without

r/SpaceX 3 Aug 26, 2022
Anti Spam/NSFW Telegram Bot Written In Python With Pyrogram.

Anti Spam/NSFW Telegram Bot Written In Python With Pyrogram.

Wahyusaputra 2 Dec 29, 2021
Change the name and pfp of ur accounts, uses tokens.txt for ur tokens.

Change the name and pfp of ur accounts, uses tokens.txt for ur tokens. Also scrapes the pfps+names from a server chosen by you. For hq tokens go to discord.gg/tokenshop or t.me/praisetelegram

cChimney 36 Dec 09, 2022
Elon Muschioso is a Telegram bot that you can use to manage your computer from the phone.

elon Elon Muschioso is a Telegram bot that you can use to manage your computer from the phone. what does it do? Elon Muschio makes a connection from y

4 Feb 28, 2022
Python3 script to dump employee information from XING API

XingDumper Python 3 script to dump company employees from XING API. Perfect OSINT tool ;-) The results contain firstname, lastname, position, gender,

LRVT 11 Dec 26, 2022
Yes, it's true :revolving_hearts: This repository has 301 stars.

Yes, it's true! Inspired by a similar repository from @RealPeha, but implemented using a webhook on AWS Lambda and API Gateway, so it's serv

511 Dec 30, 2022
Trading bot - A Trading bot With Python

Trading_bot Trading bot intended for 1) Tracking current prices of tokens 2) Set

Tymur Kotkov 29 Dec 01, 2022
Мои личные наработки по новому API Тинькофф. Не официально.

TinkoffNewAPI Мои личные наработки по новому API Тинькофф. Не официально. Официально по ссылке: https://github.com/Tinkoff/investAPI/ Выложено по прос

1 Jan 20, 2022
=>|<= the MsgRoom bot for Windows 96

=|= bot A MsgRoom bot in Python 3 for Windows96.net. The bot joins as =|=, if parameter name_lasts is not true and default_name is =|=. The full

Larry Holst 2 Jun 07, 2022
veez music bot is a telegram music bot project, allow you to play music on voice chat group telegram.

🎶 VEEZ MUSIC BOT Veez Music is a telegram bot project that's allow you to play music on telegram voice chat group. Requirements 📝 FFmpeg NodeJS node

levina 143 Jun 19, 2022
E0 AI Bot is based on the message, it prints the answer with the highest probability using probability from the database.

E0 AI Chat Bot Based on the message, it prints the answer with the highest probability using probability from the database. Install on linux (Arch,Deb

Error 27 Dec 03, 2022
A Python script that wraps the gitleaks tool to enable scanning of multiple repositories in parallel

mpgitleaks A Python script that wraps the gitleaks tool to enable scanning of multiple repositories in parallel. The motivation behind writing this sc

Emilio Reyes 7 Dec 29, 2022
A file-based quote bot written in Python

Let's Write a Python Quote Bot! This repository will get you started with building a quote bot in Python. It's meant to be used along with the Learnin

Jyoti prakash Rout 1 Jan 08, 2022
An API wrapper for the file.io web service.

🗃️ File.io An API wrapper for the file.io web service. Install $ pip3 install fileio or

nkot56297 1 Dec 18, 2021
WhatsApp Api Python - This documentation aims to exemplify the use of Moorse Whatsapp API in Python

WhatsApp API Python ChatBot Este repositório contém uma aplicação que se utiliza

Moorse.io 3 Jan 08, 2022