Deep reinforcement learning library built on top of Neural Network Libraries

Overview

License Build status

Deep Reinforcement Learning Library built on top of Neural Network Libraries

NNablaRL is a deep reinforcement learning library built on top of Neural Network Libraries that is intended to be used for research, development and production.

Installation

Installing NNablaRL is easy!

$ pip install nnabla-rl

NNablaRL only supports Python version >= 3.6 and NNabla version >= 1.17.

Enabling GPU accelaration (Optional)

NNablaRL algorithms run on CPU by default. To run the algorithm on GPU, first install nnabla-ext-cuda as follows. (Replace [cuda-version] depending on the CUDA version installed on your machine.)

$ pip install nnabla-ext-cuda[cuda-version]
# Example installation. Supposing CUDA 11.0 is installed on your machine.
$ pip install nnabla-ext-cuda110

After installing nnabla-ext-cuda, set the gpu id to run the algorithm on through algorithm's configuration.

import nnabla_rl.algorithms as A

config = A.DQNConfig(gpu_id=0) # Use gpu 0. If negative, will run on CPU.
dqn = A.DQN(env, config=config)
...

Features

Friendly API

NNablaRL has friendly Python APIs which enables to start training with only 3 lines of python code.

import nnabla_rl
import nnabla_rl.algorithms as A
from nnabla_rl.utils.reproductions import build_atari_env

env = build_atari_env("BreakoutNoFrameskip-v4") # 1
dqn = A.DQN(env)  # 2
dqn.train(env)  # 3

To get more details about NNablaRL, see documentation and examples.

Many builtin algorithms

Most of famous/SOTA deep reinforcement learning algorithms, such as DQN, SAC, BCQ, GAIL, etc., are implemented in NNablaRL. Implemented algorithms are carefully tested and evaluated. You can easily start training your agent using these verified implementations.

For the list of implemented algorithms see here.

You can also find the reproduction and evaluation results of each algorithm here.
Note that you may not get completely the same results when running the reproduction code on your computer. The result may slightly change depending on your machine, nnabla/nnabla-rl's package version, etc.

Seemless switching of online and offline training

In reinforcement learning, there are two main training procedures, online and offline, to train the agent. Online training is a training procedure that executes both data collection and network update alternately. Conversely, offline training is a training procedure that updates the network using only existing data. With NNablaRL, you can switch these two training procedures seemlessly. For example, as shown below, you can easily train a robot's controller online using simulated environment and finetune it offline with real robot dataset.

import nnabla_rl
import nnabla_rl.algorithms as A

simulator = get_simulator() # This is just an example. Assuming that simulator exists
dqn = A.DQN(simulator)
# train online for 1M iterations
dqn.train_online(simulator, total_iterations=1000000)

real_data = get_real_robot_data() # This is also an example. Assuming that you have real robot data
# fine tune the agent offline for 10k iterations using real data
dqn.train_offline(real_data, total_iterations=10000)

Getting started

Try below interactive demos to get started.
You can run it directly on Colab from the links in the table below.

Title Notebook Target RL task
Simple reinforcement learning training to get started Open In Colab Pendulum
Learn how to use training algorithms Open In Colab Pendulum
Learn how to use customized network model for training Open In Colab Mountain car
Learn how to use different network solver for training Open In Colab Pendulum
Learn how to use different replay buffer for training Open In Colab Pendulum
Learn how to use your own environment for training Open In Colab Customized environment
Atari game training example Open In Colab Atari games

Documentation

Full documentation is here.

Contribution guide

Any kind of contribution to NNablaRL is welcome! See the contribution guide for details.

License

NNablaRL is provided under the Apache License Version 2.0 license.

Comments
  • Update cem function interface

    Update cem function interface

    Updated interface of cross entropy function methods. The args, pop_size is now changed to sample_size. In addition, the given objective function to CEM function will be called with variable x which has (batch_size, sample_size, x_dim). This is different from previous interface. If you want to know the details, please see the function docs.

    opened by sbsekiguchi 1
  • Add implementation for RNN support and DRQN algorithm

    Add implementation for RNN support and DRQN algorithm

    Add RNN model support and DRQN algorithm.

    Following trainers will support RNN-model.

    • Q value-based trainers
    • Deterministic gradient and Soft policy trainers

    Other trainers can support RNN models in future but is not implemented in the initial release.

    See this paper for the details of the DRQN algorithm.

    opened by ishihara-y 1
  • Implement SACD

    Implement SACD

    This PR implements SAC-D algorithm. https://arxiv.org/abs/2206.13901

    These changes have been made:

    • New environments with factored reward functions have been added
      • FactoredLunarLanderContinuousV2NNablaRL-v1
      • FactoredAntV4NNablaRL-v1
      • FactoredHopperV4NNablaRL-v1
      • FactoredHalfCheetahV4NNablaRL-v1
      • FactoredWalker2dV4NNablaRL-v1
      • FactoredHumanoidV4NNablaRL-v1
    • SACD algorithms has been added
    • SoftQDTrainer has been added
    • _InfluenceMetricsEvaluator has been added
    • reproduction script has been added (not benchmarked yet)

    visualizing influence metrics

    import gym
    
    import numpy as np
    import matplotlib.pyplot as plt
    
    import nnabla_rl.algorithms as A
    import nnabla_rl.hooks as H
    import nnabla_rl.writers as W
    from nnabla_rl.utils.evaluator import EpisodicEvaluator
    
    env = gym.make("FactoredLunarLanderContinuousV2NNablaRL-v1")
    eval_env = gym.make("FactoredLunarLanderContinuousV2NNablaRL-v1")
    
    evaluation_hook = H.EvaluationHook(
        eval_env,
        EpisodicEvaluator(run_per_evaluation=10),
        timing=5000,
        writer=W.FileWriter(outdir="logdir", file_prefix='evaluation_result'),
    )
    iteration_num_hook = H.IterationNumHook(timing=100)
    
    config = A.SACDConfig(gpu_id=0, reward_dimension=9)
    sacd = A.SACD(env, config=config)
    sacd.set_hooks([iteration_num_hook, evaluation_hook])
    sacd.train_online(env, total_iterations=100000)
    
    influence_history = []
    
    state = env.reset()
    while True:
        action = sacd.compute_eval_action(state)
        influence = sacd.compute_influence_metrics(state, action)
        influence_history.append(influence)
        state, _, done, _ = env.step(action)
        if done:
            break
    
    influence_history = np.array(influence_history)
    for i, label in enumerate(["position", "velocity", "angle", "left_leg", "right_leg", "main_eingine", "side_engine", "failure", "success"]):
        plt.plot(influence_history[:, i], label=label)
    plt.xlabel("step")
    plt.ylabel("influence metrics")
    plt.legend()
    plt.show()
    

    image

    sample animation

    sample

    opened by ishihara-y 0
  • Add gmm and Update gaussian

    Add gmm and Update gaussian

    Added gmm and gaussian of the numpy models. In addition, updated the gaussian distribution's API.

    The API change is like following:

    Previous :

    batch_size = 10
    output_dim = 10
    input_shape = (batch_size, output_dim)
    mean = np.zeros(shape=input_shape)
    sigma = np.ones(shape=input_shape) * 5.
    ln_var = np.log(sigma) * 2.
    distribution = D.Gaussian(mean, ln_var)
    # return nn.Variable
    assert isinstance(distribution.sample(), nn.Variable)
    

    Updated:

    batch_size = 10
    output_dim = 10
    input_shape = (batch_size, output_dim)
    mean = np.zeros(shape=input_shape)
    sigma = np.ones(shape=input_shape) * 5.
    ln_var = np.log(sigma) * 2.
    # You have to pass the nn.Variable if you want to get nn.Variable as all class method's return.
    distribution = D.Gaussian(nn.Variable.from_numpy_array(mean), nn.Variable.from_numpy_array(ln_var))
    assert isinstance(distribution.sample(), nn.Variable)
    
    # If you pass np.ndarray, then all class methods return np.ndarray
    # Currently, only support without batch shape (i.e. mean.shape = (dims,), ln_var.shape = (dims, dims)).
    distribution = D.Gaussian(mean[0], np.diag(ln_var[0]))  # without batch
    assert isinstance(distribution.sample(), np.ndarray)
    
    opened by sbsekiguchi 0
  • Support nnabla-browser

    Support nnabla-browser

    • [x] add MonitorWriter
    • [x] save computational graph as nntxt

    example

    import gym
    
    import nnabla_rl.algorithms as A
    import nnabla_rl.hooks as H
    import nnabla_rl.writers as W
    from nnabla_rl.utils.evaluator import EpisodicEvaluator
    
    # save training computational graph
    training_graph_hook = H.TrainingGraphHook(outdir="test")
    
    # evaluation hook with nnabla's Monitor
    eval_env = gym.make("Pendulum-v0")
    evaluator = EpisodicEvaluator(run_per_evaluation=10)
    evaluation_hook = H.EvaluationHook(
        eval_env,
        evaluator,
        timing=10,
        writer=W.MonitorWriter(outdir="test", file_prefix='evaluation_result'),
    )
    
    env = gym.make("Pendulum-v0")
    sac = A.SAC(env)
    sac.set_hooks([training_graph_hook, evaluation_hook])
    
    sac.train_online(env, total_iterations=100)
    

    image image

    opened by ishihara-y 0
  • Add iLQR and LQR

    Add iLQR and LQR

    Implementation of Linear Quadratic Regulator (LQR) and iterative LQR algorithms.

    Co-authored-by: Yu Ishihara [email protected] Co-authored-by: Shunichi Sekiguchi [email protected]

    opened by ishihara-y 0
  • Check np_random instance and use correct randint alternative

    Check np_random instance and use correct randint alternative

    I am not sure when this change was made but in some environment, gym.unwrapped.np_random returns Generator instead of RandomState.

    # in case of RandomState
    # this line works
    gym.unwrapped.np_random.rand_int(...)
    # in case of Generator
    # rand_int does not exist and we must use integers as an alternative
    gym.unwrapped.np_random.integers(...)
    

    This PR will fix this issue and chooses correct function for sampling integers.

    opened by ishihara-y 0
  • Add icra2018 qtopt

    Add icra2018 qtopt

    opened by sbsekiguchi 0
Releases(v0.12.0)
Owner
Sony
Sony Group Corporation
Sony
Web3 Pancakeswap Sniper & honeypot detector Take Profit/StopLose bot written in python3, For ANDROID WIN MAC & LINUX

Pancakeswap BSC Sniper Bot web3 with honeypot detector (ANDROID WINDOWS MAC LINUX) First SNIPER BOT for ANDROID with honeypot detector Web3 Pancakeswa

HYDRA 1 Dec 23, 2021
Let your friends know when you are online and offline xD

Twitter Last Seen Activity Let your friends know when you are online and offline Laser-light eyes when online Last seen is mentioned in user bio Also

Kush Choudhary 12 Aug 16, 2021
A tiktok autoclaimer/sniper used to get og/rare usernames on tiktok.com

TikTok Autoclaimer A tiktok autoclaimer/sniper used to get og/rare usernames on tiktok.com Report Bug · Request Feature Features Asynchronous User fri

dropout 24 Dec 08, 2022
A multipurpose, semi-modular Discord bot written in Python with the new discord.py module.

Discord.py Reaction Bot MIRAI KURIYAMA A multipurpose, semi-modular Discord bot written in Python with the new discord.py module. Installing dependenc

1 Dec 02, 2021
Discord Bot written in Python that plays music in your voice channel

Discord Bot that plays music! I decided to create a simple Discord bot using Python in order to advance my coding skills. Please don't ask me for help

Eric Yeung 39 Jan 01, 2023
A component of BuzzUtilityBot that allows for inter-server communication

A component of BuzzUtilityBot that allows for inter-server communication! Separated due to privacy and ease of inspection concerns

OHaiiBuzzle 2 Oct 11, 2022
A GUI Application that creates a Spotify Playlist from any year in the past, by just entering your preferred date

A GUI Application that creates a Spotify Playlist from any year in the past, by just entering your preferred date

David .K. Danso 1 Jan 17, 2022
Telegram Userbot to steram youtube live or Youtube vido in telegram vc by help of pytgcalls

TGVCVidioPlayerUB Telegram Userbot to steram youtube live or youtube vidio in telegram vc by help of pytgcalls Commands = Vidio Playing 🎧 stream :

Achu biju 3 Oct 28, 2022
Unarchive Bot for Telegram

Telegram UnArchiver Bot UnArchiveBot: 🇬🇧 Bot that allows you to extract supported archive formats in telegram. 🇹🇷 Desteklenen arşiv biçimleri tele

Hüzünlü Artemis [HuzunluArtemis] 25 May 07, 2022
Wrapper for shh/rsync for use with OpenFOAM and blue bear

bbsync wrapper for shh/rsync for use with OpenFOAM and blue bear About The Project bbsync is a wrapper for shh/rsync for use with OpenFOAM and blue be

1 Dec 10, 2021
A Simple Telegram Inline Torrent Search Bot by @infotechIT

Torrent-Search-RoBot A Simple Telegram Inline Torrent Search Bot by @infotechIT. Torrent API Using api.infotech.wtf API Host Bot Deploy to Heroku Clic

InfoTech 0 May 05, 2022
❤️ Hi There Im EzilaX ❤️ A next gen powerful telegram group manager bot 😱 for manage your groups and have fun with other cool modules Made By Sadew Jayasekara 🔥

❤️ EzilaX v1 ❤️ Unmaintained. The new repo of @EzilaXBot is Public. (It is no longer based on this source code. The completely rewritten bot available

Sadew Jayasekara 18 Nov 24, 2021
A Bot To Get Info Of Telegram messages , Media , Channel id Group ID etc.

Info-Bot A Bot To Get Info Of Telegram messages , Media , Channel id Group ID etc. Get Info Of Your And Messages , Channels , Groups ETC... How to mak

Vɪᴠᴇᴋ 23 Nov 12, 2022
Senditapp.com bot spammer, spam your friends

Sendit Spammer Python ⚠️ I am not responsible for how you use this tool. This tool is against "Sendit" ToS and shall not be used in a production envir

Glaukio 1 Dec 31, 2021
A new coin listing alert bot using Python, Flask, MongoDB, Telegram API and Binance API

Bzzmans New Coin Listing Detection Bot Architecture About Project Work in progress. This bot basically gets new coin listings from Binance using Binan

Eyüp Barlas 21 May 31, 2022
A python bot that will allow you to have maximum luck during Veve drops.

VeveBot You can follow me here Github | Twitter Features: - Click on the purchase at the time of the drop. - Be able to choose to do more than one tes

Rodz 1 Dec 04, 2021
Discord raiding tool. Made in python 3.9

XSpammer Discord raiding tool with 20 features. YT Showcase Requirements/Installation Python 3.7+ [https://python.org] Run setup.bat to install the es

Tiie 6 Oct 24, 2022
The community bot for the Python Discord community

Python Utility Bot This project is a Discord bot specifically for use with the Python Discord server. It provides numerous utilities and other tools t

Python Discord 998 Jan 03, 2023
Sample code helps get you started with a simple Python web service using AWS Lambda and Amazon API Gateway

Welcome to the AWS CodeStar sample web service This sample code helps get you started with a simple Python web service using AWS Lambda and Amazon API

0 Jan 20, 2022
Easy Discord Webhook Token Grabber!

Easy Discord Webhook Token Grabber!

†† 27 Jun 01, 2022