Data preprocessing rosetta parser for python

Overview

datapreprocessing_rosetta_parser

I've never done any NLP or text data processing before, so I wanted to use this hackathon as a learning opportunity, specifically targeting popular packages like pandas, beautifulsoup and spacy.

The main idea of my project is to recreate Jelle Teijema's preprocessing pipeline and then try to run Dutch language model on each document to extract things of interest, such as emails, urls, organizations, people and dates. Maybe at this point, it shouldn't be considered just pre-processing, hmmm. Anyway, I've used nl_core_news_lg model. It is not very reliable, especially for organization and person names, however, it still allows for interesting queries.

Moreover, I've decided to try to do a summarization and collection of the most frequent words in the documents. My script tries to find N_SUMMARY_SENTENCES most important sentences and store it in the summary column. Please note, my Dutch is not very strong, so I can't really judge how well it works :)

Finally, the script also saves cleaned title and file contents, as per track anticipated output.

Output file

generate.py reads .csv files from input_data folder and produces output .csv file with | separator. It is pretty heavy (about x1.8 of input csv, ~75MB) and has a total of 15 columns:

Column name Description
filename Original filename provided in the input file
file_content Original file contents provided in the input file
id The dot separated numbers from the filename
category Type of a file
filename_date Date extracted from a filename
parsed_date Date extracted from file contents
found_emails Emails found in the file contents
found_urls URLs found in the file contents
found_organizations Organizations found in the file contents
found_people People found in the file contents
found_dates Dates found in the file contents
summary Summary of the document
top5words Top 5 most frequently used words in the file contents
title Somewhat cleaned title
abstract Somewhat cleaned file contents

Some interesting queries that I could think of at 12pm

  1. Load the output processed .csv file:
import pandas as pd
df = pd.read_csv('./output_data/processed_data.csv', sep='|',
                 index_col=0, dtype=str)
  1. All unique emails found in the documents:
import ast
emails = sum([ast.literal_eval(x) for x in df['found_emails']], [])
unique_emails = set(emails)
  1. Top 10 communicated domains in the documents:
from collections import Counter
domains = [x.split('@')[1] for x in emails]
d_counter = Counter(domains)
print(d_counter.most_common(10))
  1. Top 10 organizations mentioned in the documents:
orgs = sum([ast.literal_eval(x) for x in df['found_organizations']], [])
o_counter = Counter(orgs)
print(o_counter.most_common(10))
  1. Find IDs of documents that contain word "confidential" in them:
df['id'][df['abstract'].str.contains('confidential')]
  1. How many documents and categories there are in the dataset:
print(f'Total number of documents: {len(df)}')
print('Documents by category:')
df['category'].value_counts()

and I am sure you can be significantly more creative with this :)

How to generate output data

  1. Install dependencies with conda and switch to the environment:
conda env create -f environment.yml
conda activate ftm_hackathon

Alternatively (not tested), you can install packages to your current environment manually:

pip install spacy tqdm pandas bs4
  1. Download Dutch spacy model, ~500MB:
python -m spacy download nl_core_news_lg
  1. Put your raw .csv files into input_data folder.

  2. Run generate.py. On my 6yo laptop it takes ~17 minutes.

  3. The result will be written in output_data/processed_data.csv

Owner
ASReview hackathon for Follow the Money
ASReview hackathon for Follow the Money
Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!

Easy-Translate is a script for translating large text files in your machine using the M2M100 models from Facebook/Meta AI. We also privide a script fo

Iker García-Ferrero 41 Dec 15, 2022
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)

DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase

DATASET .JSC 64 Aug 17, 2022
[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

Cambridge Language Technology Lab 61 Dec 10, 2022
FastFormers - highly efficient transformer models for NLU

FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst

Microsoft 678 Jan 05, 2023
This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe

Advent-of-cyber-2019-writeup This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe https://tryhackme.com/shivam007/badges/c

shivam danawale 5 Jul 17, 2022
Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai

TextCortex - HemingwAI Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingw

TextCortex AI 27 Nov 28, 2022
Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings

Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings Trong bài viết này mình sẽ sử dụng pretrain model SimCS

Vo Van Phuc 18 Nov 25, 2022
Code for "Generative adversarial networks for reconstructing natural images from brain activity".

Reconstruct handwritten characters from brains using GANs Example code for the paper "Generative adversarial networks for reconstructing natural image

K. Seeliger 2 May 17, 2022
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17.1k Jan 09, 2023
Pytorch version of BERT-whitening

BERT-whitening This is the Pytorch implementation of "Whitening Sentence Representations for Better Semantics and Faster Retrieval". BERT-whitening is

Weijie Liu 255 Dec 27, 2022
auto_code_complete is a auto word-completetion program which allows you to customize it on your need

auto_code_complete v1.3 purpose and usage auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the m

RUO 2 Feb 22, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Google and Stanford University released a new pre-trained model called ELECTRA

Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For furth

Yiming Cui 1.2k Dec 30, 2022
KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정한 코드입니다.

KoBERTopic 모델 소개 KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정했습니다. 기존 BERTopic : https://github.com/MaartenGr/BERTopic/tree/05a6790b21009d

Won Joon Yoo 26 Jan 03, 2023
Comprehensive-E2E-TTS - PyTorch Implementation

A Non-Autoregressive End-to-End Text-to-Speech (text-to-wav), supporting a family of SOTA unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultima

Keon Lee 114 Nov 13, 2022
Residual2Vec: Debiasing graph embedding using random graphs

Residual2Vec: Debiasing graph embedding using random graphs This repository contains the code for S. Kojaku, J. Yoon, I. Constantino, and Y.-Y. Ahn, R

SADAMORI KOJAKU 5 Oct 12, 2022
Ceaser-Cipher - The Caesar Cipher technique is one of the earliest and simplest method of encryption technique

Ceaser-Cipher The Caesar Cipher technique is one of the earliest and simplest me

Lateefah Ajadi 2 May 12, 2022
Use the power of GPT3 to execute any function inside your programs just by giving some doctests

gptrun Don't feel like coding today? Use the power of GPT3 to execute any function inside your programs just by giving some doctests. How is this diff

Roberto Abdelkader Martínez Pérez 11 Nov 11, 2022