Klexikon: A German Dataset for Joint Summarization and Simplification

Overview

Klexikon: A German Dataset for Joint Summarization and Simplification

Dennis Aumiller and Michael Gertz
Heidelberg University

Under submission at LREC 2022
A preprint version of the paper can be found on arXiv!
For easy access, we have also made the dataset available on Huggingface Datasets!


Data Availability

To use data in your experiments, we suggest the existing training/validation/test split, available in ./data/splits/. This split has been generated with a stratified sampling strategy (based on document lengths) and a 80/10/10 split, which ensure that the samples are somewhat evenly distributed.

Alternatively, please refer to our Huggingface Datasets version for easy access of the preprocessed data.

Installation

This repository contains the code to crawl the Klexikon data set presented in our paper, as well as all associated baselines and splits. You can work on the existing code base by simply cloning this repository.

Install all required dependencies with the following command:

python3 -m pip install -r requirements.txt

The experiments were run on Python 3.8.4, but should run fine with any version >3.7. To run files, relative imports are required, which forces you to run them as modules, e.g.,

python3 -m klexikon.analysis.compare_offline_stats

instead of

python3 klexikon/analysis/compare_offline_stats.py

Furthermore, this requires the working directory to be the root folder as well, to ensure correct referencing of relative data paths. I.e., if you cloned this repository into /home/dennis/projects/klexikon, make sure to run scripts directly from this path.

Extended Explanation

Manually Replaced Articles in articles.json

Aside from all the manual matches, which can be produced by create_matching_url_list.py, there are some articles which simply link to an incorrect article in Wikipedia.
We approximate this by the number of paragraphs in the Wikipedia article, which is generally much longer than the Klexikon article, and therefore should have at least 15 paragraphs. Note that most of the pages are disambiguations, which unfortunately don't necessarily correspond neatly to a singular Wikipedia page. We remove the article if it is not possible to find a singular Wikipedia article that covers more than 66% of the paragraphs in the Klexikon article. Some examples for manual changes were:

  • "Aal" to "Aale"
  • "Abendmahl" to "Abendmahl Jesu"
  • "Achse" to "Längsachse"
  • "Ader" to "Blutgefäß"
  • "Albino" to "Albinismus"
  • "Alkohol" to "Ethanol"
  • "Android" to "Android (Betriebssystem)"
  • "Anschrift" to "Postanschrift"
  • "Apfel" to "Kulturapfel"
  • "App" to "Mobile App"
  • "Appenzell" to "Appenzellerland"
  • "Arabien" to "Arabische Halbinsel"
  • "Atlas" to "Atlas (Kartografie)"
  • "Atmosphäre" to "Erdatmospähre"

Merging sentences that end in a semicolon (;)

This applies to any position in the document. The reason is rectifying some unwanted splits by spaCy.

Merge of short lines in lead 3 baseline

Also checking for lines that have less than 10 characters in the first three sentences. This helps with fixing the lead-3 baseline, and most issues arise from some incorrect splits to begin with.

Removal of coordinates

Sometimes, coordinate information is leading in the data, which seems to be embedded in some Wikipedia articles. We remove any coordinate with a simple regex.

Sentences that do not end in a period

Manual correction of sentences (in the lead 3) that do not end in periods. This has been automatically fixed by merging content similarly to the semicolon case. Specifically, we only merge if the subsequent line is not just an empty line.

Using your own data

Currently, the systems expect input data to be processed in a line-by-line fashion, where every line represents a sentence, and each file represents an input document. Note that we currently do not support multi-document summarization.

Criteria for discarding articles

Articles where Wikipedia has less than 15 paragraphs. Otherwise, manually discarding when there are no matching articles in Wikipedia (see above). Examples of the latter case are for example "Kiwi" or "Washington"

Reasons for not using lists

As described in the paper, we discard any element that is not a

tag in the HTLM code. This helps getting rid of actual unwanted information (images, image captions, meta-descriptors, etc.), but also removes list items. After reviewing some examples, we have decided to discard list elements altogether. This means that some articles (especially disambiguation pages) are also easier to detect.

Final number of valid article pairs: 2898

This means we had to discard around 250 articles from the original list at the time of crawling (April 2021). In the meantime, there have been new articles added to Klexikon, which leaves room for future improvements.

Execution Order of Scripts

TK: I'll include a better reference to the particular scripts in the near future, as well as a script that actually executes everything relevant in order.

  • Generate JSON file with article URLs
  • Crawl texts
  • Fix lead sentences
  • Remove unused articles (optional)
  • Generate stratified split

License Information

Both Wikipedia and Klexikon make their textual contents available under the CC BY-SA license. Per recommendation of the Creative Commons, we apply a separate license to the software component of this repository. Data will be re-distributed under the CC BY-SA license.

Contributions

Contributions are very welcome. Please either open an issue or pull request if you have any suggestion on how this data can be improved. Open TODOs:

  • So far, the data does not have more than a few simplistic baselines, and lacks an actually trained system on top of the data.
  • The dataset is "out-of-date", since it does not include any of the more recently articles (~100 since the inception of my version). Potentially, we can increase the availability to almost 3000 articles.
  • Adding a top-level script that adds correct execution order of different scripts to generate baselines/results/etc.
  • Adding a proper data managing script for the Huggingface Datasets version of this dataset.

How to Cite?

If you use our dataset, or code from this repository, please cite

@article{aumiller-gertz-2022-klexikon,  
  title   = {{Klexikon: A German Dataset for Joint Summarization and Simplification}},  
  author  = {Aumiller, Dennis and Gertz, Michael},  
  year    = {2022},  
  journal = {arXiv preprint arXiv:2201.07198},  
  url     = {https://arxiv.org/abs/2201.07198},  
}
Owner
Dennis Aumiller
PhD student in Information Retrieval & NLP at Heidelberg University. Python is awesome, and so is Huggingface
Dennis Aumiller
🚀 RocketQA, dense retrieval for information retrieval and question answering, including both Chinese and English state-of-the-art models.

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutt

475 Jan 04, 2023
뉴스 도메인 질의응답 시스템 (21-1학기 졸업 프로젝트)

뉴스 도메인 질의응답 시스템 본 프로젝트는 뉴스기사에 대한 질의응답 서비스 를 제공하기 위해서 진행한 프로젝트입니다. 약 3개월간 ( 21. 03 ~ 21. 05 ) 진행하였으며 Transformer 아키텍쳐 기반의 Encoder를 사용하여 한국어 질의응답 데이터셋으로

TaegyeongEo 4 Jul 08, 2022
A sample project that exists for PyPUG's "Tutorial on Packaging and Distributing Projects"

A sample Python project A sample project that exists as an aid to the Python Packaging User Guide's Tutorial on Packaging and Distributing Projects. T

Python Packaging Authority 4.5k Dec 30, 2022
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries.

VirtualAssistant Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries. Third Party Libraries us

Logadheep 1 Nov 27, 2021
Script and models for clustering LAION-400m CLIP embeddings.

clustering-laion400m Script and models for clustering LAION-400m CLIP embeddings. Models were fit on the first million or so image embeddings. A subje

Peter Baylies 22 Oct 04, 2022
A python wrapper around the ZPar parser for English.

NOTE This project is no longer under active development since there are now really nice pure Python parsers such as Stanza and Spacy. The repository w

ETS 49 Sep 12, 2022
HAN2HAN : Hangul Font Generation

HAN2HAN : Hangul Font Generation

Changwoo Lee 36 Dec 28, 2022
Model for recasing and repunctuating ASR transcripts

Recasing and punctuation model based on Bert Benoit Favre 2021 This system converts a sequence of lowercase tokens without punctuation to a sequence o

Benoit Favre 88 Dec 29, 2022
Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"

T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear

Google Research 4.6k Jan 01, 2023
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Maarten Grootendorst 120 Dec 27, 2022
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023
Rank-One Model Editing for Locating and Editing Factual Knowledge in GPT

Rank-One Model Editing (ROME) This repository provides an implementation of Rank-One Model Editing (ROME) on auto-regressive transformers (GPU-only).

Kevin Meng 130 Dec 21, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling This repository contains PyTorch evaluation code, training code and pretrain

Facebook Research 94 Oct 26, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP prod

VinAI Research 109 Dec 02, 2022
MiCECo - Misskey Custom Emoji Counter

MiCECo Misskey Custom Emoji Counter Introduction This little script counts custo

7 Dec 25, 2022
Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 08, 2022
Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

Leah Pathan Khan 2 Jan 12, 2022
Healthsea is a spaCy pipeline for analyzing user reviews of supplementary products for their effects on health.

Welcome to Healthsea ✨ Create better access to health with spaCy. Healthsea is a pipeline for analyzing user reviews to supplement products by extract

Explosion 75 Dec 19, 2022