neural network based speaker embedder

Overview

Content

What is deepaudio-speaker?

Deepaudio-speaker is a framework for training neural network based speaker embedders. It supports online audio augmentation thanks to torch-audiomentation. It inlcudes or will include popular neural network architectures and losses used for speaker embedder.

To make it easy to use various functions such as mixed-precision, multi-node training, and TPU training etc, I introduced PyTorch-Lighting and Hydra in this framework (just like what pyannote-audio and openspeech do).

Deepaudio-tts is coming soon.

Installation

conda create -n deepaudio python=3.8.5
conda activate deepaudio
conda install numpy cffi
conda install libsndfile=1.0.28 -c conda-forge
git clone https://github.com/deepaudio/deepaudio-speaker.git
cd deepaudio-speaker
pip install -e .

Get Started

Supported Datasets

####Voxceleb2

/path/to/voxceleb/voxceleb1/dev/wav/id10001/1zcIwhmdeo4/00001.wav
/path/to/voxceleb/voxceleb1/test/wav/id10270/5r0dWxy17C8/00001.wav
/path/to/voxceleb/voxceleb2/dev/aac/id00012/21Uxsk56VDQ/00001.m4a
/path/to/voxceleb/voxceleb2/test/aac/id00017/01dfn2spqyE/00001.m4a

Training examples

  • Example1: Train the ecapa-tdnn model with fbank features on GPU.
$ deepaudio-speaker-train  \
    dataset=voxceleb2 \
    dataset.dataset_path=/your/path/to/voxceleb2/dev/wav/ \
    model=ecapa \
    model.channels=1024 \
    feature=fbank \
    lr_scheduler=warmup_reduce_lr_on_plateau \
    trainer=gpu \
    criterion=aamsoftmax
  • Example2: Extract speaker embedding with trained model.

Todo

Model Architecture

ECAPA-TDNN This is an unofficial implementation from @lawlict. Please find more details in this link.

ECAPA-TDNN This is implemented by @joonson. Please find more details in this link.

ResNetSE34L This is borrowed from voxceleb trainer.

ResNetSE34V2 This is borrowed from voxceleb trainer.

resnet101 This is proposed by BUT for speaker diarization. Please note that the feature used in this framework is different from VB-HMM

How to contribute to deepaudio-speaker

It is a personal project. So I don't have enough gpu resources to do a lot of experiments. I appreciate any kind of feedback or contributions. Please feel free to make a pull requsest for some small issues like bug fixes, experiment results. If you have any questions, please open an issue.

Acknowledge

I borrow a lot of codes from openspeech and pyannote-audio

A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS.

A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to ach

Keon Lee 237 Jan 02, 2023
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022
📔️ Generate a text-based journal from a template file.

JGen 📔️ Generate a text-based journal from a template file. Contents Getting Started Example Overview Usage Details Reserved Keywords Gotchas Getting

Harrison Broadbent 21 Sep 25, 2022
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。

SimpleChinese2 SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。 声明 本项目是为方便个人工作所创建的,仅有部分代码原创。

Ming 30 Dec 02, 2022
Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Pulkit Kathuria 173 Jan 04, 2023
📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation

Well-formed Limericks and Haikus with GPT2 📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation In collaboration with Matthew Korahais &

Bardia Shahrestani 2 May 26, 2022
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

What is MUSE? MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE). MUS

Dani El-Ayyass 47 Sep 05, 2022
BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese

Table of contents Introduction Using BARTpho with fairseq Using BARTpho with transformers Notes BARTpho: Pre-trained Sequence-to-Sequence Models for V

VinAI Research 58 Dec 23, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

LancoPKU 105 Jan 03, 2023
A fast and easy implementation of Transformer with PyTorch.

FasySeq FasySeq is a shorthand as a Fast and easy sequential modeling toolkit. It aims to provide a seq2seq model to researchers and developers, which

宁羽 7 Jul 18, 2022
Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Housegan-data-reader House-GAN++ (data-reader) Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN

Sepid Hosseini 13 Nov 24, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
Paddlespeech Streaming ASR GUI

Paddlespeech-Streaming-ASR-GUI Introduction A paddlespeech Streaming ASR GUI. Us

Niek Zhen 3 Jan 05, 2022
The code for the Subformer, from the EMNLP 2021 Findings paper: "Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers", by Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo

Subformer This repository contains the code for the Subformer. To help overcome this we propose the Subformer, allowing us to retain performance while

Machel Reid 10 Dec 27, 2022
TFIDF-based QA system for AIO2 competition

AIO2 TF-IDF Baseline This is a very simple question answering system, which is developed as a lightweight baseline for AIO2 competition. In the traini

Masatoshi Suzuki 4 Feb 19, 2022
Subtitle Workshop (subshop): tools to download and synchronize subtitles

SUBSHOP Tools to download, remove ads, and synchronize subtitles. SUBSHOP Purpose Limitations Required Web Credentials Installation, Configuration, an

Joe D 4 Feb 13, 2022
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine

Microsoft 7.8k Jan 09, 2023
An end to end ASR Transformer model training repo

END TO END ASR TRANSFORMER 本项目基于transformer 6*encoder+6*decoder的基本结构构造的端到端的语音识别系统 Model Instructions 1.数据准备: 自行下载数据,遵循文件结构如下: ├── data │ ├── train │

旷视天元 MegEngine 10 Jul 19, 2022
DeepPavlov Tutorials

DeepPavlov tutorials DeepPavlov: Sentence Classification with Word Embeddings DeepPavlov: Transfer Learning with BERT. Classification, Tagging, QA, Ze

Neural Networks and Deep Learning lab, MIPT 28 Sep 13, 2022