A Python library created to assist programmers with complex mathematical functions

Overview

libmaths

python License

libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using math in their code. With pre-programmed mathematical functions ranging from linear to sextic and more, graphing in your code will be a breeze.

Quick Demo


Installation

The package is available on PyPI. Install with:

pip install libmaths

or

pip3 install libmaths

libmaths only supports Python 3.8 and above, so please make sure you are on the newest version.

General Usage

There are many functions, but here is one example:

from libmaths import polynomial

After that, graphing a quadratic function is as simple as:

polynomial.quadratic(2, 4, 6)

If you need more assistance, examples are provided here.

General Information

libmaths was created by me, a 14-year old high schooler at Lynbrook High School 3 days ago on 2/20/2021. libmaths exists to help reduce the incapability to make quick and accurate models in Python within seconds. With a limited usage of external libraries and access to a multitude of functions, libmaths' variety is one of the many things that makes it unique. With the creation of this library, I hope to bring simplicity and accuracy together.

Documentation

I am currently working on getting the documentation out to a website. It will be added upon completion.

Mathematical Functions

The mathematical functions provided in libmaths are listed below:

  1. Graphable Functions

    • Linear
      • Slope Intercept Form
      • Point Slope Form
      • Constant
    • Polynomial
      • Standard Quadratic
      • Vertex Form Quadratic
      • Cubic
      • Quartic
      • Quintic
      • Sextic
    • Trigonometry
      • Sine
      • Cosine
      • Tangent
  2. Visualizeable Functions

    • Constant Graph
      • ReLU
      • Sigmoid
  3. Others

    • Output / Graphable Functions
      • Logarithmic
      • Absolute Value
      • Sigmoid -> Int Output
      • Relu -> Int Output
      • isPrime
      • isSquare
      • Divisor

Public References

r/Python : r/Python Post

Future Plans

In the future, I plan on adding several different complex functions.

Contributing

First, install the required libraries:

pip install -r requirements.txt

Please remember that I am a high school student with less than half a year of experience in Python programming. I already know you can do better than me! If you have any issues, suggestions, or requests, please feel free to contact me by opening an issue or on my linkedin which can be found in my profile page.

Thanks for contributing!

Resources

Over the three days spent in creating this library, I used plenty of resources which can be found in my code. You will see links under many of my functions which you can read about the concepts in.

Feedback, comments, or questions

If you have any feedback or something you would like to tell me, please do not hesitate to share! Feel free to comment here on github or reach out to me through [email protected]!

©Vinay Venkatesh 2021

You might also like...
Functions for easily making publication-quality figures with matplotlib.
Functions for easily making publication-quality figures with matplotlib.

Data-viz utils 📈 Functions for data visualization in matplotlib 📚 API Can be installed using pip install dvu and then imported with import dvu. You

Declarative statistical visualization library for Python
Declarative statistical visualization library for Python

Altair http://altair-viz.github.io Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understa

Cartopy - a cartographic python library with matplotlib support
Cartopy - a cartographic python library with matplotlib support

Cartopy is a Python package designed to make drawing maps for data analysis and visualisation easy. Table of contents Overview Get in touch License an

a plottling library for python, based on D3

Hello August 2013 Hello! Maybe you're looking for a nice Python interface to build interactive, javascript based plots that look as nice as all those

A Python Library for Self Organizing Map (SOM)

SOMPY A Python Library for Self Organizing Map (SOM) As much as possible, the structure of SOM is similar to somtoolbox in Matlab. It has the followin

Multi-class confusion matrix library in Python
Multi-class confusion matrix library in Python

Table of contents Overview Installation Usage Document Try PyCM in Your Browser Issues & Bug Reports Todo Outputs Dependencies Contribution References

NorthPitch is a python soccer plotting library that sits on top of Matplotlib
NorthPitch is a python soccer plotting library that sits on top of Matplotlib

NorthPitch is a python soccer plotting library that sits on top of Matplotlib.

The interactive graphing library for Python (includes Plotly Express) :sparkles:
The interactive graphing library for Python (includes Plotly Express) :sparkles:

plotly.py Latest Release User forum PyPI Downloads License Data Science Workspaces Our recommended IDE for Plotly’s Python graphing library is Dash En

🎨 Python Echarts Plotting Library
🎨 Python Echarts Plotting Library

pyecharts Python ❤️ ECharts = pyecharts English README 📣 简介 Apache ECharts (incubating) 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达

Comments
  • Updated logic in isPrime to stay consistent

    Updated logic in isPrime to stay consistent

    Comment says "from 2 to value / 2" however the code uses a loop that goes all of the way up to value. I updated the logic to be more consistent with the comment above it.

    opened by alecgirman 9
  • Use OOP to simplify code

    Use OOP to simplify code

    First and foremost, it's amazing to see a 14 year old writing a library. Keep up the good work, this is a great beginning! I hope this project gets traction, it could be very useful for school/college students for their maths assignment.

    In terms of the code, there are a few ways you could improve them. Making a polynomial class is probably more efficient and scalable than writing a function for every degree.

    How to write such class can be found at https://www.python-course.eu/polynomial_class_in_python.php

    TLDR : See the code below (taken from the page above)

    
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    class Polynomial:
     
    
        def __init__(self, *coefficients):
            """ input: coefficients are in the form a_n, ...a_1, a_0 
            """
            self.coefficients = list(coefficients) # tuple is turned into a list
    
            
        def __repr__(self):
            """
            method to return the canonical string representation 
            of a polynomial.
       
            """
            return "Polynomial" + str(self.coefficients)
    
        
        def __call__(self, x):    
            res = 0
            for coeff in self.coefficients:
                res = res * x + coeff
            return res 
    
        
        def degree(self):
            return len(self.coefficients)   
    
        
        def __add__(self, other):
            c1 = self.coefficients[::-1]
            c2 = other.coefficients[::-1]
            res = [sum(t) for t in zip_longest(c1, c2, fillvalue=0)]
            return Polynomial(*res)
    
        
        def __sub__(self, other):
            c1 = self.coefficients[::-1]
            c2 = other.coefficients[::-1]
            
            res = [t1-t2 for t1, t2 in zip_longest(c1, c2, fillvalue=0)]
            return Polynomial(*res)
     
    
        def derivative(self):
            derived_coeffs = []
            exponent = len(self.coefficients) - 1
            for i in range(len(self.coefficients)-1):
                derived_coeffs.append(self.coefficients[i] * exponent)
                exponent -= 1
            return Polynomial(*derived_coeffs)
    
        
        def __str__(self):
            
            def x_expr(degree):
                if degree == 0:
                    res = ""
                elif degree == 1:
                    res = "x"
                else:
                    res = "x^"+str(degree)
                return res
    
            degree = len(self.coefficients) - 1
            res = ""
    
            for i in range(0, degree+1):
                coeff = self.coefficients[i]
                # nothing has to be done if coeff is 0:
                if abs(coeff) == 1 and i < degree:
                    # 1 in front of x shouldn't occur, e.g. x instead of 1x
                    # but we need the plus or minus sign:
                    res += f"{'+' if coeff>0 else '-'}{x_expr(degree-i)}"  
                elif coeff != 0:
                    res += f"{coeff:+g}{x_expr(degree-i)}" 
    
            return res.lstrip('+')    # removing leading '+'
    
    opened by subash774 1
  • fleshed out ArithmeticSeries and GeometricSeries classes

    fleshed out ArithmeticSeries and GeometricSeries classes

    Fixed an import error and fleshed out ArithmeticSeries and GeometricSeries classes. This could be a good demo for generators, class methods and inheritance for you. :)

    opened by atharva-naik 0
  • Opening new file series and adding Polynomial class to polynomial.py

    Opening new file series and adding Polynomial class to polynomial.py

    I have added a new file for series, which you can use to implement sin, cosine series, arithmetic, geometric, harmonic etc. types of series, and I have also added a polynomial class which I talked about in my reddit post. I have made comments that might help you understand classes a bit. Please feel free to contact me if you face any issues. Best of luck and keep it up !!

    opened by atharva-naik 0
Owner
Simple
14 year old programming enthusiast with a strong passion toward AI and Machine Learning.
Simple
Open-source demos hosted on Dash Gallery

Dash Sample Apps This repository hosts the code for over 100 open-source Dash apps written in Python or R. They can serve as a starting point for your

Plotly 2.7k Jan 07, 2023
Automate the case review on legal case documents and find the most critical cases using network analysis

Automation on Legal Court Cases Review This project is to automate the case review on legal case documents and find the most critical cases using netw

Yi Yin 7 Dec 28, 2022
In-memory Graph Database and Knowledge Graph with Natural Language Interface, compatible with Pandas

CogniPy for Pandas - In-memory Graph Database and Knowledge Graph with Natural Language Interface Whats in the box Reasoning, exploration of RDF/OWL,

Cognitum Octopus 34 Dec 13, 2022
Minimal Ethereum fee data viewer for the terminal, contained in a single python script.

Minimal Ethereum fee data viewer for the terminal, contained in a single python script. Connects to your node and displays some metrics in real-time.

48 Dec 05, 2022
Bokeh Plotting Backend for Pandas and GeoPandas

Pandas-Bokeh provides a Bokeh plotting backend for Pandas, GeoPandas and Pyspark DataFrames, similar to the already existing Visualization feature of

Patrik Hlobil 822 Jan 07, 2023
clock_plot provides a simple way to visualize timeseries data, mapping 24 hours onto the 360 degrees of a polar plot

clock_plot clock_plot provides a simple way to visualize timeseries data mapping 24 hours onto the 360 degrees of a polar plot. For usage, please see

12 Aug 24, 2022
A minimalistic wrapper around PyOpenGL to save development time

glpy glpy is pyOpenGl wrapper which lets you work with pyOpenGl easily.It is not meant to be a replacement for pyOpenGl but runs on top of pyOpenGl to

Abhinav 9 Apr 02, 2022
Runtime analysis of code with plotting

Runtime analysis of code with plotting A quick comparison among Python, Cython, and the C languages A Programming Assignment regarding the Programming

Cena Ashoori 2 Dec 24, 2021
Mattia Ficarelli 2 Mar 29, 2022
Tools for calculating and visualizing Elo-like ratings of MLB teams using Retosheet data

Overview This project uses historical baseball games data to calculate an Elo-like rating for MLB teams based on regular season match ups. The Elo rat

Lukas Owens 0 Aug 25, 2021
TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow with breakpoints + real-time visualization of the data flowing through the computational graph

TensorDebugger (TDB) is a visual debugger for deep learning. It extends TensorFlow (Google's Deep Learning framework) with breakpoints + real-time visualization of the data flowing through the comput

Eric Jang 1.4k Dec 15, 2022
A tool for creating SVG timelines from simple JSON input.

A tool for creating SVG timelines from simple JSON input.

Jason Reisman 432 Dec 30, 2022
Matplotlib tutorial for beginner

matplotlib is probably the single most used Python package for 2D-graphics. It provides both a very quick way to visualize data from Python and publication-quality figures in many formats. We are goi

Nicolas P. Rougier 2.6k Dec 28, 2022
Python script for writing text on github contribution chart.

Github Contribution Drawer Python script for writing text on github contribution chart. Requirements Python 3.X Getting Started Create repository Put

Steven 0 May 27, 2022
Python Data Structures for Humans™.

Schematics Python Data Structures for Humans™. About Project documentation: https://schematics.readthedocs.io/en/latest/ Schematics is a Python librar

Schematics 2.5k Dec 28, 2022
Browse Dash docsets inside emacs

Helm Dash What's it This package uses Dash docsets inside emacs to browse documentation. Here's an article explaining the basic usage of it. It doesn'

504 Dec 15, 2022
A data visualization curriculum of interactive notebooks.

A data visualization curriculum of interactive notebooks, using Vega-Lite and Altair. This repository contains a series of Python-based Jupyter notebooks.

UW Interactive Data Lab 1.2k Dec 30, 2022
Glue is a python project to link visualizations of scientific datasets across many files.

Glue Glue is a python project to link visualizations of scientific datasets across many files. Click on the image for a quick demo: Features Interacti

675 Dec 09, 2022
Jupyter Notebook extension leveraging pandas DataFrames by integrating DataTables and ChartJS.

Jupyter DataTables Jupyter Notebook extension to leverage pandas DataFrames by integrating DataTables JS. About Data scientists and in fact many devel

Marek Čermák 142 Dec 28, 2022
Automatically visualize your pandas dataframe via a single print! 📊 💡

A Python API for Intelligent Visual Discovery Lux is a Python library that facilitate fast and easy data exploration by automating the visualization a

Lux 4.3k Dec 28, 2022