Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control

Overview

Distributed Grid Descent

An implementation of Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control as described in Appendix B of Working Memory Graphs [Loynd et al., 2019].

Note: This project is a work in progress. Please contact me if you like to contribute and help to develop a fully fledged python library out of it.

Usage

import numpy as np
from dgd import DistributedGridDescent

model = ... # model wrapper
data = {
    "train_data": ...
}

param_grid = {
    "learning_rate":[3e-3, 1e-3, 3e-4, 1e-4, 3e-5, 1e-5],
    "optimizer":["adam", "rmsprop"],
    "lr_annealing":[False, 0.95, 0.99],
    "batch_size":[32, 64, 128, 256, 1024],
    "num_linear_layers":[1, 2, 4, 8, 16],
    "num_neurons":[512, 256, 128, 64, 32, 16],
    "dropout":[0.0, 0.1, 0.3, 0.5],
    "l2":[0.0, 0.01, 0.1]
}

dgd = DistributedGridDescent(model, param_grid, metric=np.mean, n_jobs=-1)
dgd.run(data)

print(dgd.best_params_)
df = pd.DataFrame(dgd.results_).set_index("ID").sort_values(by=["metric"],ascending=False)

Examples and Tutorials

See sklearn_example.py, pytorch_example.py, rosenbrock_example.py and tensorflow_example.py in the examples folder for examples of basic usage of dgd.
See rosenbrock_server_example.py for an example of distributed usage.

Strong and weak scaling analysis

scaling_analysis

Algorithm

Input: Set of hyperparameters H, each having a discrete, ordered set of possible values.  
Input: Maximum number of training steps N per run.  
repeat  
    Download any new results.  
    if no results so far then
        Choose a random configuration C from the grid defined by H.
    else
        Identify the run set S with the highest metric.
        Initialize neighborhood B to contain only S.
        Expand B by adding all possible sets whose configurations differ from that of S by one step in exactly one hyperparameter setting.
        Calculate a ceiling M = Count(B) + 1.
        Weight each run set x in B M - Count(x).
        Sample a random run set S' from B according to run set weights.
        Choose configuration C from S'.
    end if
    Perform one training run of N steps using C.
    Calculate the runs Metric.
    Log the result on shared storage.
until terminated by user.

See Appendix B of Loynd et al., 2019 for details.

Owner
Martin
Machine Learning Engineer at heart MSc Student in Computational Science & Engineering :computer: :books: :wrench: @ ETH Zürich :switzerland:
Martin
A lightweight, pure-Python mobile robot simulator designed for experiments in Artificial Intelligence (AI) and Machine Learning, especially for Jupyter Notebooks

aitk.robots A lightweight Python robot simulator for JupyterLab, Notebooks, and other Python environments. Goals A lightweight mobile robotics simulat

3 Oct 22, 2021
All algorithms implemented in Python for education

The Algorithms - Python All algorithms implemented in Python - for education Implementations are for learning purposes only. As they may be less effic

1 Oct 20, 2021
Solving a card game with three search algorithms: BFS, IDS, and A*

Search Algorithms Overview In this project, we want to solve a card game with three search algorithms. In this card game, we have to sort our cards by

Korosh 5 Aug 04, 2022
Fedlearn algorithm toolkit for researchers

Fedlearn algorithm toolkit for researchers

89 Nov 14, 2022
BCI datasets and algorithms

Brainda Welcome! First and foremost, Welcome! Thank you for visiting the Brainda repository which was initially released at this repo and reorganized

52 Jan 04, 2023
A* (with 2 heuristic functions), BFS , DFS and DFS iterativeA* (with 2 heuristic functions), BFS , DFS and DFS iterative

Descpritpion This project solves the Taquin game (jeu de taquin) problem using different algorithms : A* (with 2 heuristic functions), BFS , DFS and D

Ayari Ahmed 3 May 09, 2022
Implementation of core NuPIC algorithms in C++

NuPIC Core This repository contains the C++ source code for the Numenta Platform for Intelligent Computing (NuPIC)

Numenta 270 Nov 19, 2022
PickMush - A mini study/project on boosting algorithm

PickMush A mini project implementing Boosting Author Shashwat Vaibhav What does it do? Classifies whether Mushroom is edible or is non-edible (binary

Shashwat Vaibahav 3 Nov 08, 2022
A Python program to easily solve the n-queens problem using min-conflicts algorithm

QueensProblem A program to easily solve the n-queens problem using min-conflicts algorithm Performances estimated with a sample of 1000 different rand

0 Oct 21, 2022
Rover. Finding the shortest pass by Dijkstra’s shortest path algorithm

rover Rover. Finding the shortest path by Dijkstra’s shortest path algorithm Задача Вы — инженер, проектирующий роверы-беспилотники. Вам надо спроекти

1 Nov 11, 2021
Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life.

Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life. The algorithm is designed to replicate the natural selection process to carry generatio

Mahdi Hassanzadeh 4 Dec 24, 2022
causal-learn: Causal Discovery for Python

causal-learn: Causal Discovery for Python Causal-learn is a python package for causal discovery that implements both classical and state-of-the-art ca

589 Dec 29, 2022
Infomap is a network clustering algorithm based on the Map equation.

Infomap Infomap is a network clustering algorithm based on the Map equation. For detailed documentation, see mapequation.org/infomap. For a list of re

347 Dec 23, 2022
Pathfinding algorithm based on A*

Pathfinding V1 What is pathfindingV1 ? This program is my very first path finding program, using python and turtle for graphic rendering. How is it wo

Yan'D 6 May 26, 2022
This is an implementation of the QuickHull algorithm in Python. I

QuickHull This is an implementation of the QuickHull algorithm in Python. It randomly generates a set of points and finds the convex hull of this set

Anant Joshi 4 Dec 04, 2022
Visualisation for sorting algorithms. Version 2.0

Visualisation for sorting algorithms v2. Upped a notch from version 1. This program provides animates simple, common and popular sorting algorithms, t

Ben Woo 7 Nov 08, 2022
Implementation for Evolution of Strategies for Cooperation

Moraliser Implementation for Evolution of Strategies for Cooperation Dependencies You will need a python3 (= 3.8) environment to run the code. Before

1 Dec 21, 2021
The test data, code and detailed description of the AW t-SNE algorithm

AW-t-SNE The test data, code and result of the AW t-SNE algorithm Structure of the folder Datasets: This folder contains two datasets, the MNIST datas

1 Mar 09, 2022
Wordle-solver - A program that solves a Wordle using a simple algorithm

Wordle Solver A program that solves a Wordle using a simple algorithm. To see it

Luc Bouchard 3 Feb 13, 2022
Ralebel is an interpreted, Haitian Creole programming language that aims to help Haitians by starting with the fundamental algorithm

Ralebel is an interpreted, Haitian Creole programming language that aims to help Haitians by starting with the fundamental algorithm

Lub Lorry Lamysère 5 Dec 01, 2022