Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control

Overview

Distributed Grid Descent

An implementation of Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control as described in Appendix B of Working Memory Graphs [Loynd et al., 2019].

Note: This project is a work in progress. Please contact me if you like to contribute and help to develop a fully fledged python library out of it.

Usage

import numpy as np
from dgd import DistributedGridDescent

model = ... # model wrapper
data = {
    "train_data": ...
}

param_grid = {
    "learning_rate":[3e-3, 1e-3, 3e-4, 1e-4, 3e-5, 1e-5],
    "optimizer":["adam", "rmsprop"],
    "lr_annealing":[False, 0.95, 0.99],
    "batch_size":[32, 64, 128, 256, 1024],
    "num_linear_layers":[1, 2, 4, 8, 16],
    "num_neurons":[512, 256, 128, 64, 32, 16],
    "dropout":[0.0, 0.1, 0.3, 0.5],
    "l2":[0.0, 0.01, 0.1]
}

dgd = DistributedGridDescent(model, param_grid, metric=np.mean, n_jobs=-1)
dgd.run(data)

print(dgd.best_params_)
df = pd.DataFrame(dgd.results_).set_index("ID").sort_values(by=["metric"],ascending=False)

Examples and Tutorials

See sklearn_example.py, pytorch_example.py, rosenbrock_example.py and tensorflow_example.py in the examples folder for examples of basic usage of dgd.
See rosenbrock_server_example.py for an example of distributed usage.

Strong and weak scaling analysis

scaling_analysis

Algorithm

Input: Set of hyperparameters H, each having a discrete, ordered set of possible values.  
Input: Maximum number of training steps N per run.  
repeat  
    Download any new results.  
    if no results so far then
        Choose a random configuration C from the grid defined by H.
    else
        Identify the run set S with the highest metric.
        Initialize neighborhood B to contain only S.
        Expand B by adding all possible sets whose configurations differ from that of S by one step in exactly one hyperparameter setting.
        Calculate a ceiling M = Count(B) + 1.
        Weight each run set x in B M - Count(x).
        Sample a random run set S' from B according to run set weights.
        Choose configuration C from S'.
    end if
    Perform one training run of N steps using C.
    Calculate the runs Metric.
    Log the result on shared storage.
until terminated by user.

See Appendix B of Loynd et al., 2019 for details.

Owner
Martin
Machine Learning Engineer at heart MSc Student in Computational Science & Engineering :computer: :books: :wrench: @ ETH Zürich :switzerland:
Martin
This is an Airport Scheduling Time table implemented using Genetic Algorithm

This is an Airport Scheduling Time table implemented using Genetic Algorithm In this The scheduling is performed on the basisi of that no two Air planes are arriving or departing at the same runway a

1 Jan 06, 2022
A raw implementation of the nearest insertion algorithm to resolve TSP problems in a TXT format.

TSP-Nearest-Insertion A raw implementation of the nearest insertion algorithm to resolve TSP problems in a TXT format. Instructions Load a txt file wi

sjas_Phantom 1 Dec 02, 2021
Using A * search algorithm and GBFS search algorithm to solve the Romanian problem

Romanian-problem-using-Astar-and-GBFS Using A * search algorithm and GBFS search algorithm to solve the Romanian problem Romanian problem: The agent i

Mahdi Hassanzadeh 6 Nov 22, 2022
Official implementation of "Path Planning using Neural A* Search" (ICML-21)

Path Planning using Neural A* Search (ICML 2021) This is a repository for the following paper: Ryo Yonetani*, Tatsunori Taniai*, Mohammadamin Barekata

OMRON SINIC X 82 Jan 07, 2023
Planning Algorithms in AI and Robotics. MSc course at Skoltech Data Science program

Planning Algorithms in AI and Robotics course T2 2021-22 The Planning Algorithms in AI and Robotics course at Skoltech, MS in Data Science, during T2,

Mobile Robotics Lab. at Skoltech 6 Sep 21, 2022
Python Sorted Container Types: Sorted List, Sorted Dict, and Sorted Set

Python Sorted Containers Sorted Containers is an Apache2 licensed sorted collections library, written in pure-Python, and fast as C-extensions. Python

Grant Jenks 2.8k Jan 04, 2023
Machine Learning algorithms implementation.

Machine Learning Algorithms Machine Learning algorithms implementation. What can I find here? ML Algorithms KNN K-Means-Clustering SVM (MultiClass) Pe

David Levin 1 Dec 10, 2021
iAWE is a wonderful dataset for those of us who work on Non-Intrusive Load Monitoring (NILM) algorithms.

iAWE is a wonderful dataset for those of us who work on Non-Intrusive Load Monitoring (NILM) algorithms. You can find its main page and description via this link. If you are familiar with NILM-TK API

Mozaffar Etezadifar 3 Mar 19, 2022
Policy Gradient Algorithms (One Step Actor Critic & PPO) from scratch using Numpy

Policy Gradient Algorithms From Scratch (NumPy) This repository showcases two policy gradient algorithms (One Step Actor Critic and Proximal Policy Op

1 Jan 17, 2022
zoofs is a Python library for performing feature selection using an variety of nature inspired wrapper algorithms. The algorithms range from swarm-intelligence to physics based to Evolutionary. It's easy to use ,flexible and powerful tool to reduce your feature size.

zoofs is a Python library for performing feature selection using a variety of nature-inspired wrapper algorithms. The algorithms range from swarm-intelligence to physics-based to Evolutionary. It's e

Jaswinder Singh 168 Dec 30, 2022
Python implementation of Aho-Corasick algorithm for string searching

Python implementation of Aho-Corasick algorithm for string searching

Daniel O'Sullivan 1 Dec 31, 2021
Data Model built using Logistic Regression Algorithm on Python.

Logistic-Regression Problem Statement: Your client is a retail banking institution. Term deposits are a major source of income for a bank. A term depo

Hemanth Babu Muthineni 0 Dec 25, 2021
FingerPy is a algorithm to measure, analyse and monitor heart-beat using only a video of the user's finger on a mobile cellphone camera.

FingerPy is a algorithm using python, scipy and fft to measure, analyse and monitor heart-beat using only a video of the user's finger on a m

Thiago S. Brasil 37 Oct 21, 2022
A custom prime algorithm, implementation, and performance code & review

Colander A custom prime algorithm, implementation, and performance code & review Pseudocode Algorithm 1. given a number of primes to find, the followi

Finn Lancaster 3 Dec 17, 2021
Visualisation for sorting algorithms. Version 2.0

Visualisation for sorting algorithms v2. Upped a notch from version 1. This program provides animates simple, common and popular sorting algorithms, t

Ben Woo 7 Nov 08, 2022
Optimal skincare partition finder using graph theory

Pigment The problem of partitioning up a skincare regime into parts such that each part does not interfere with itself is equivalent to the minimal cl

Jason Nguyen 1 Nov 22, 2021
A simple python implementation of A* and bfs algorithm solving Eight-Puzzle

A simple python implementation of A* and bfs algorithm solving Eight-Puzzle

2 May 22, 2022
Evol is clear dsl for composable evolutionary algorithms that optimised for joy.

Evol is clear dsl for composable evolutionary algorithms that optimised for joy. Installation We currently support python3.6 and python3.7 and you can

GoDataDriven 178 Dec 27, 2022
8-puzzle-solver with UCS, ILS, IDA* algorithm

Eight Puzzle 8-puzzle-solver with UCS, ILS, IDA* algorithm pre-usage requirements python3 python3-pip virtualenv prepare enviroment virtualenv -p pyth

Mohsen Arzani 4 Sep 22, 2021
Algorithms for calibrating power grid distribution system models

Distribution System Model Calibration Algorithms The code in this library was developed by Sandia National Laboratories under funding provided by the

Sandia National Laboratories 2 Oct 31, 2022