PICO is an algorithm for exploiting Reinforcement Learning (RL) on Multi-agent Path Finding tasks.

Related tags

AlgorithmsPICO
Overview

GitHub license Read the Docs GitHub issues GitHub forks GitHub stars

PICO is an algorithm for exploiting Reinforcement Learning (RL) on Multi-agent Path Finding tasks. It is developed by the Multi-Agent Artificial Intelligence Lab (MAIL) in East China Normal University and the AI Research Institute in Geekplus Technology Co., Ltd. PICO is constructed based on the framework of PRIMAL:Pathfinding via Reinforcement and Imitation Multi-Agent Learning and focuses more on the collision avoidance rather than manual post-processing when collision occurs. Exploiting the design of decentralized communication and implicit priority in these secenarios benifits better path finding. To emphasis, more details about PICO can be found in our paper Multi-Agent Path Finding with Prioritized Communication Learning, which is accepted by ICRA 2022.

Distributed Assembly

Reinforcement learning code to train multiple agents to collaboratively plan their paths in a 2D grid world.

Key Components of PICO

  • pico_training.py: Multi-agent training code. Training runs on GPU by default, change line "with tf.device("/gpu:0"):" to "with tf.device("/cpu:0"):" to train on CPU (much slower).Researchers can also flexibly customized their configuration in this file.
  • mapf_gym.py: Multi-agent path planning gym environment, in which agents learn collective path planning.
  • pico_testing.py: Code to run systematic validation tests of PICO, pulled from the saved_environments folder as .npy files and output results in a given folder (by default: test_result).

Installation

git clone https://github.com/mail-ecnu/PICO.git
cd PICO
conda env create -f conda_env.yml
conda activate PICO-dev

Before compilation: compile cpp_mstar code

  • cd into the od_mstar3 folder.
  • python3 setup.py build_ext (may need --inplace as extra argument).
  • copy so object from build/lib.*/ at the root of the od_mstar3 folder.
  • Check by going back to the root of the git folder, running python3 and "import cpp_mstar"

Quick Examples

pico_training.py:

episode_count          = 0
MAX_EPISODE            = 20
EPISODE_START          = episode_count
gamma                  = .95 # discount rate for advantage estimation and reward discounting
#moved network parameters to ACNet.py
EXPERIENCE_BUFFER_SIZE = 128
GRID_SIZE              = 11 #the size of the FOV grid to apply to each agent
ENVIRONMENT_SIZE       = (10,20)#(10,70) the total size of the environment (length of one side)
OBSTACLE_DENSITY       = (0,0.3) #(0,0.5) range of densities
DIAG_MVMT              = False # Diagonal movements allowed?
a_size                 = 5 + int(DIAG_MVMT)*4
SUMMARY_WINDOW         = 10
NUM_META_AGENTS        = 3
NUM_THREADS            = 8 #int(multiprocessing.cpu_count() / (2 * NUM_META_AGENTS))
# max_episode_length     = 256 * (NUM_THREADS//8)
max_episode_length     = 256
NUM_BUFFERS            = 1 # NO EXPERIENCE REPLAY int(NUM_THREADS / 2)
EPISODE_SAMPLES        = EXPERIENCE_BUFFER_SIZE # 64
LR_Q                   = 2.e-5
ADAPT_LR               = True
ADAPT_COEFF            = 5.e-5 #the coefficient A in LR_Q/sqrt(A*steps+1) for calculating LR
load_model             = False
RESET_TRAINER          = False
gifs_path              = 'gifs'
from datetime import datetime
TIMESTAMP = "{0:%Y-%m-%dT%H-%M/}".format(datetime.now())

GLOBAL_NET_SCOPE       = 'global'

#Imitation options
PRIMING_LENGTH         = 2500    #0 number of episodes at the beginning to train only on demonstrations
DEMONSTRATION_PROB     = 0.5

Then

python pico_training.py

Custom testing

Edit pico_testing.py according to the training setting. By default, the model is loaded from the model folder.

Then

python pico_testing.py

Requirements

  • Python 3.4
  • Cython 0.28.4
  • OpenAI Gym 0.9.4
  • Tensorflow 1.3.1
  • Numpy 1.13.3
  • matplotlib
  • imageio (for GIFs creation)
  • tk
  • networkx (if using od_mstar.py and not the C++ version)

Citing our work

If you use this repo in your work, please consider citing the corresponding paper (first two authors contributed equally):

@InProceedings{lichen2022mapf,
  title =    {Multi-Agent Path Finding with Prioritized Communication Learning},
  author =   {Wenhao, Li* and Hongjun, Chen* and Bo, Jin and Wenzhe, Tan and Hongyuan, Zha and Xiangfeng, Wang},
  booktitle =    {ICRA},
  year =     {2022},
  pdf =      {https://arxiv.org/pdf/2202.03634},
  url =      {https://arxiv.org/abs/2202.03634},
}

License

Licensed under the MIT License.

Exam Schedule Generator using Genetic Algorithm

Exam Schedule Generator using Genetic Algorithm Requirements Use any kind of crossover Choose any justifiable rate of mutation Use roulette wheel sele

Sana Khan 1 Jan 12, 2022
Sign data using symmetric-key algorithm encryption.

Sign data using symmetric-key algorithm encryption. Validate signed data and identify possible validation errors. Uses sha-(1, 224, 256, 385 and 512)/hmac for signature encryption. Custom hash algori

Artur Barseghyan 39 Jun 10, 2022
Gnat - GNAT is NOT Algorithmic Trading

GNAT GNAT is NOT Algorithmic Trading! GNAT is a financial tool with two goals in

Sher Shah 2 Jan 09, 2022
Provide player's names and mmr and generate mathematically balanced teams

Lollo's matchmaking algorithm Provide player's names and mmr and generate mathematically balanced teams How to use Fill the input.json file with your

4 Aug 04, 2022
A lightweight, pure-Python mobile robot simulator designed for experiments in Artificial Intelligence (AI) and Machine Learning, especially for Jupyter Notebooks

aitk.robots A lightweight Python robot simulator for JupyterLab, Notebooks, and other Python environments. Goals A lightweight mobile robotics simulat

3 Oct 22, 2021
HashDB is a community-sourced library of hashing algorithms used in malware.

HashDB HashDB is a community-sourced library of hashing algorithms used in malware. How To Use HashDB HashDB can be used as a stand alone hashing libr

OALabs 216 Jan 06, 2023
Algorithm for Cutting Stock Problem using Google OR-Tools. Link to the tool:

Cutting Stock Problem Cutting Stock Problem (CSP) deals with planning the cutting of items (rods / sheets) from given stock items (which are usually o

Emad Ehsan 87 Dec 31, 2022
Resilient Adaptive Parallel sImulator for griD (rapid)

Rapid is an open-source software library that implements a novel “parallel-in-time” (Parareal) algorithm and semi-analytical solutions for co-simulation of integrated transmission and distribution sy

Richard Lincoln 7 Sep 07, 2022
Our implementation of Gillespie's Stochastic Simulation Algorithm (SSA)

SSA Our implementation of Gillespie's Stochastic Simulation Algorithm (SSA) Requirements python =3.7 numpy pandas matplotlib pyyaml Command line usag

Anoop Lab 1 Jan 27, 2022
:computer: Data Structures and Algorithms in Python

Algorithms in Python Implementations of a few algorithms and datastructures for fun and profit! Completed Karatsuba Multiplication Basic Sorting Rabin

Prakhar Srivastav 2.9k Jan 01, 2023
Python package to monitor the power consumption of any algorithm

CarbonAI This project aims at creating a python package that allows you to monitor the power consumption of any python function. Documentation The com

Capgemini Invent France 36 Nov 11, 2022
Minimal pure Python library for working with little-endian list representation of bit strings.

bitlist Minimal Python library for working with bit vectors natively. Purpose This library allows programmers to work with a native representation of

Andrei Lapets 0 Jul 25, 2022
Genetic Algorithm for Robby Robot based on Complexity a Guided Tour by Melanie Mitchell

Robby Robot Genetic Algorithm A Genetic Algorithm based Robby the Robot in Chapter 9 of Melanie Mitchell's book Complexity: A Guided Tour Description

Matthew 2 Dec 01, 2022
Algoritmos de busca:

Algoritmos-de-Buscas Algoritmos de busca: Abaixo está a interface da aplicação: Ao selecionar o tipo de busca e o caminho, então será realizado o cálc

Elielson Barbosa 5 Oct 04, 2021
FLIght SCheduling OPTimization - a simple optimization library for flight scheduling and related problems in the discrete domain

Fliscopt FLIght SCheduling OPTimization 🛫 or fliscopt is a simple optimization library for flight scheduling and related problems in the discrete dom

33 Dec 17, 2022
A* (with 2 heuristic functions), BFS , DFS and DFS iterativeA* (with 2 heuristic functions), BFS , DFS and DFS iterative

Descpritpion This project solves the Taquin game (jeu de taquin) problem using different algorithms : A* (with 2 heuristic functions), BFS , DFS and D

Ayari Ahmed 3 May 09, 2022
BCI datasets and algorithms

Brainda Welcome! First and foremost, Welcome! Thank you for visiting the Brainda repository which was initially released at this repo and reorganized

52 Jan 04, 2023
This repository explores an implementation of Grover's Algorithm for knights on a chessboard.

Grover Knights Welcome to my Knights project! Project Description: I explore an implementation of a quantum oracle for knights on a chessboard.

Will Sun 8 Feb 22, 2022
🌟 Python algorithm team note for programming competition or coding test

🌟 Python algorithm team note for programming competition or coding test

Seung Hoon Lee 3 Feb 25, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem Abstract The Travelling Salesman Problem is a well known NP-Hard problem. Given

Gary Sun 55 Jun 15, 2022