An NUS timetable generator which uses a genetic algorithm to optimise timetables to suit the needs of NUS students.

Overview

Where Got Time(table)?

A timetable optimiser for NUS which uses an evolutionary algorithm to "breed" a timetable suited to your needs.



Try it out here!

Inspiration

Planning the best fit timetable to suit our needs can be an absolute nightmare. Different sets of modules can result in a seemingly limitless combinations of timetable. Comparing and choosing the best timetable can take hours or even days. The struggle is real

Having chanced upon an article on genetic algorithm, we thought that this would be the best approach to tackling an optimization problem involving timetabling/scheduling. This project aims to provide the most optimized timetable given a set of pre-defined constraints.

What It Does

Users can input the following:

  • Modules codes for the particular semester
  • Adjustable start and end time
  • Select free days
  • Maximize lunch timings
  • Determine minimum hours of break between classes

Based on user inputs, the most optimized timetable is generated.





Why It Works

A Genetic Algorithm mimics the process of natural selection and evolution by combining the "elite" timetables to form the "next generation" of timetables.

The evolutionary process:

  1. Extracting, cleaning and generating our own data structure from NUSMods API
  2. Initialise the first generation which includes a population of timetables
  3. Grading each timetable with a fitness score
  4. Cross-over fittest "parents" to generate 2 "child" timetables with mutations
  5. Assign these timetables to the next generation
  6. Repeat this process until the fitness score across a generation converges
  7. If the soft and hard constraints were not met after reaching the generation limit, the most optimised timetable is returned to the user

How We Built It

Our main algorithm was written with Python. It utilizes NUSMods API to fetch the relevant module data. Some filtering and cleaning up of the data grants us a workable data structure. Implementation of the genetic algorithm returns a link that is sent to the web page which generates an image for the user.

Firstly, we generate a population of timetables. Using a scoring algorithm, we rate the fitness of each timetable. Timetables with a better fitness score gets to produce the next generation of timetables through cross-overs and mutation.

We repeat this process until the average fitness score of the entire generation converges to within a tolerance range. The fittest timetable from the final generation is returned to the user.

Challenges We Ran Into

Managing large data structures comes with confusing errors that are hard to pinpoint. NUS offers more than 6000 modules, some classes are fixed while others are variable. This results in multiple varying data structures for different modules. As such, our code needs to be robust enough to handle the unique data structures. Integration of front and backend code was much harder than expected.

Accomplishments We're Proud Of

We are proud to have come up with a minimum viable product.

What We Learned

As this is our first group project, we learnt how to work on Git Flow, how to push and pull information via Git and version control. One of us even deleted a whole file and had to rewrite from scratch We also learnt how to approach optimization problems and how to use the NUSMods API for parsing data into our program.

What's Next For Where Got Time(table)?

Improve the UI/UX of the landing page to facilitate better user experience. Allow more user constraints such as "Minimal Time Spent in School". We will further fine-tune the program which could possibly be used as an extension for the official NUSMods. A possible feature that can be added includes a GIF of the user's timetable evolving across generations from start to finish.

Try It Out

Where Got Time(table)?

Credits/Reference

Using Genetic Algorithm to Schedule Timetables

Owner
Nicholas Lee
Student
Nicholas Lee
A collection of Python Scripts made for fun, while exploring Python 🐍

JFF-Python-Scripts A collection of Python Scripts made for fun, while exploring Python 🐍 Inspiration πŸ’‘ Many of the programs in this repository are i

Pushkar Patel 16 Oct 07, 2022
Distributed algorithms, reimplemented for fun and practice

Distributed Algorithms Playground for reimplementing and experimenting with algorithms for distributed computing. Usage Running the code for Ring-AllR

Mahan Tourkaman 1 Oct 16, 2022
Solving a card game with three search algorithms: BFS, IDS, and A*

Search Algorithms Overview In this project, we want to solve a card game with three search algorithms. In this card game, we have to sort our cards by

Korosh 5 Aug 04, 2022
A minimal implementation of the IQRM interference flagging algorithm for radio pulsar and transient searches

A minimal implementation of the IQRM interference flagging algorithm for radio pulsar and transient searches. This module only provides the algorithm that infers a channel mask from some spectral sta

Vincent Morello 6 Nov 29, 2022
A litle algorithm that i made for transform a picture in a spreadsheet.

PicsToSheets How it works? It is an algorithm designed to transform an image into a spreadsheet file. this converts image pixels to color cells of she

Guilherme de Oliveira 1 Nov 12, 2021
A custom prime algorithm, implementation, and performance code & review

Colander A custom prime algorithm, implementation, and performance code & review Pseudocode Algorithm 1. given a number of primes to find, the followi

Finn Lancaster 3 Dec 17, 2021
Leveraging Unique CPS Properties to Design Better Privacy-Enhancing Algorithms

Differential_Privacy_CPS Python implementation of the research paper Leveraging Unique CPS Properties to Design Better Privacy-Enhancing Algorithms Re

Shubhesh Anand 2 Dec 14, 2022
Search algorithm implementations meant for teaching

Search-py A collection of search algorithms for teaching and experimenting. Non-adversarial Search There’s a heavy separation of concerns which leads

Dietrich Daroch 5 Mar 07, 2022
8 Puzzle with A* , Greedy & BFS Search in Python

8_Puzzle 8 Puzzle with A* , Greedy & BFS Search in Python Python Install Python from here. Pip Install pip from here. How to run? πŸš€ Install 8_Puzzle

I3L4CK H4CK3l2 1 Jan 30, 2022
Implementation of Apriori Algorithm for Association Analysis

Implementation of Apriori Algorithm for Association Analysis

3 Nov 14, 2021
All algorithms implemented in Python for education

The Algorithms - Python All algorithms implemented in Python - for education Implementations are for learning purposes only. As they may be less effic

1 Oct 20, 2021
A genetic algorithm written in Python for educational purposes.

Genea: A Genetic Algorithm in Python Genea is a Genetic Algorithm written in Python, for educational purposes. I started writing it for fun, while lea

Dom De Felice 20 Jul 06, 2022
This repository is an individual project made at BME with the topic of self-driving car simulator and control algorithm.

BME individual project - NEAT based self-driving car This repository is an individual project made at BME with the topic of self-driving car simulator

NGO ANH TUAN 1 Dec 13, 2021
Cormen-Lib - An academic tool for data structures and algorithms courses

The Cormen-lib module is an insular data structures and algorithms library based on the Thomas H. Cormen's Introduction to Algorithms Third Edition. This library was made specifically for administeri

Cormen Lib 12 Aug 18, 2022
Algorithms written in different programming languages

Data Structures and Algorithms Clean example implementations of data structures and algorithms written in different languages. List of implementations

Zoran Pandovski 1.3k Jan 03, 2023
Algorithmic trading backtest and optimization examples using order book imbalances. (bitcoin, cryptocurrency, bitmex)

Algorithmic trading backtest and optimization examples using order book imbalances. (bitcoin, cryptocurrency, bitmex)

172 Dec 21, 2022
BCI datasets and algorithms

Brainda Welcome! First and foremost, Welcome! Thank you for visiting the Brainda repository which was initially released at this repo and reorganized

52 Jan 04, 2023
Algorithms for calibrating power grid distribution system models

Distribution System Model Calibration Algorithms The code in this library was developed by Sandia National Laboratories under funding provided by the

Sandia National Laboratories 2 Oct 31, 2022
iAWE is a wonderful dataset for those of us who work on Non-Intrusive Load Monitoring (NILM) algorithms.

iAWE is a wonderful dataset for those of us who work on Non-Intrusive Load Monitoring (NILM) algorithms. You can find its main page and description via this link. If you are familiar with NILM-TK API

Mozaffar Etezadifar 3 Mar 19, 2022
Python algorithm to determine the optimal elevation threshold of a GNSS receiver, by using a statistical test known as the Brown-Forsynthe test.

Levene and Brown-Forsynthe: Test for variances Application to Global Navigation Satellite Systems (GNSS) Python algorithm to determine the optimal ele

Nicolas Gachancipa 2 Aug 09, 2022