A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD.

Overview

8QueensGenetic

A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD.

The project uses the Kivy cross-platform Python framework for building the GUI of the 8 queens puzzle. The GUI helps to visualize the solutions reached while the genetic algorithm (GA) is optimizing the problem to find the best solution.

For implementing the genetic algorithm, the PyGAD library is used. Check its documentation here: https://pygad.readthedocs.io

IMPORTANT If you are coming for the code of the tutorial 8 Queen Puzzle Optimization Using a Genetic Algorithm in Python, then it has been moved to the TutorialProject directory on 17 June 2020.

PyGAD Installation

To install PyGAD, simply use pip to download and install the library from PyPI (Python Package Index). The library lives a PyPI at this page https://pypi.org/project/pygad.

For Windows, issue the following command:

pip install pygad

For Linux and Mac, replace pip by use pip3 because the library only supports Python 3.

pip3 install pygad

PyGAD is developed in Python 3.7.3 and depends on NumPy for creating and manipulating arrays and Matplotlib for creating figures. The exact NumPy version used in developing PyGAD is 1.16.4. For Matplotlib, the version is 3.1.0.

Project GUI

The project comes with a GUI built in Kivy, a cross-platform Python framework for building natural user interfaces. Before using the project, install Kivy:

pip install kivy

Because the project is built using Python 3, use pip3 instead of pip for Mac/Linux:

pip3 install kivy

Check this Stackoverflow answer to install other libraries that are essential to run Kivy: https://stackoverflow.com/a/44220712

The main file for this project is called main.py which holds the code for building the GUI and instantiating PyGAD for running the genetic algorithm.

After running the main.py file successfully, the window will appear as given in the figure below. The GUI uses a GridLayout for creating an 8x8 grid. This grid represents the board of the 8 queen puzzle.

main

The objective of the GA is to find the best locations for the 8 queens so that no queen is attacking another horizontally, vertically, or diagonally. This project assumes that no 2 queens are in the same row. As a result, we are sure that no 2 queens will attack each other horizontally. This leaves us to the 2 other types of attacks (vertically and diagonally).

The bottom part of the window has 3 Button widgets and 1 Label widget. From left to right, the description of the 3 Button widgets is as follows:

  • The Initial Population button creates the initial population of the GA.
  • The Show Best Solution button shows the best solution in the last generation the GA stopped at.
  • The Start GA button starts the GA iterations/generations.

The Label widget just prints some informational messages to the user. For example, it prints the fitness value of the best solution when the user presses the Show Best Solution button.

Steps to Use the Project

Follow these steps to use the project:

  1. Run the main.py file.
  2. Press the Initial Population Button.
  3. Press the Start GA Button.

After pressing the Start GA button, the GA uses the initial population and evolves its solutions until reaching the best possible solution.

Behind the scenes, some important stuff was built that includes building the Kivy GUI, instantiating PyGAD, preparing the the fitness function, preparing the callback function, and more. For more information, please check the tutorial titled 8 Queen Puzzle Optimization Using a Genetic Algorithm in Python.

6 Attacks

After running the main.py file and pressing the Initial Population button, the next figure shows one possible initial population in which 6 out of 8 queens are attacking each other.

1  6 attacks

In the Label, the fitness value is calculated as 1.0/number of attacks. In this case, the fitness value is equal to 1.0/6.0 which is 0.1667.

The next figures shows how the GA evolves the solutions until reaching the best solution in which 0 attacks exists.

5 Attacks

2  5 attacks

4 Attacks

3  4 attacks

3 Attacks

4  3 attacks

2 Attacks

5  2 attacks

1 Attack

6  1 attack

0 Attacks (Optimal Solution)

7  0 attack

IMPORTANT

It is very important to note that the GA does not guarantee reaching the optimal solution each time it works. You can make changes in the number of solutions per population, the number of generations, or the number of mutations. Other than doing that, the initial population might also be another factor for not reaching the optimal solution for a given trial.

For More Information

There are different resources that can be used to get started with the building CNN and its Python implementation.

Tutorial: 8 Queen Puzzle Optimization Using a Genetic Algorithm in Python

In 1 May 2019, I wrote a tutorial discussing this project. The tutorial is titled 8 Queen Puzzle Optimization Using a Genetic Algorithm in Python which is published at Heartbeat. Check it at these links:

Tutorial Cover Image

Book: Practical Computer Vision Applications Using Deep Learning with CNNs

You can also check my book cited as Ahmed Fawzy Gad 'Practical Computer Vision Applications Using Deep Learning with CNNs'. Dec. 2018, Apress, 978-1-4842-4167-7 which discusses neural networks, convolutional neural networks, deep learning, genetic algorithm, and more.

Find the book at these links:

Fig04

Citing PyGAD - Bibtex Formatted Citation

If you used PyGAD, please consider adding a citation to the following paper about PyGAD:

@misc{gad2021pygad,
      title={PyGAD: An Intuitive Genetic Algorithm Python Library}, 
      author={Ahmed Fawzy Gad},
      year={2021},
      eprint={2106.06158},
      archivePrefix={arXiv},
      primaryClass={cs.NE}
}

Contact Us

Owner
Ahmed Gad
Ph.D. Student at uOttawa // Machine Learning Researcher & Technical Author https://amazon.com/author/ahmedgad
Ahmed Gad
Leveraging Unique CPS Properties to Design Better Privacy-Enhancing Algorithms

Differential_Privacy_CPS Python implementation of the research paper Leveraging Unique CPS Properties to Design Better Privacy-Enhancing Algorithms Re

Shubhesh Anand 2 Dec 14, 2022
TikTok X-Gorgon & X-Khronos Generation Algorithm

TikTok X-Gorgon & X-Khronos Generation Algorithm X-Gorgon and X-Khronos headers are required to call tiktok api. I will provide you API as rental or s

TikTokMate 31 Dec 01, 2022
ROS Basics and TurtleSim

Homework 1: Turtle Control Package Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the

Anna Garverick 1 Nov 22, 2021
Python based framework providing a simple and intuitive framework for algorithmic trading

Harvest is a Python based framework providing a simple and intuitive framework for algorithmic trading. Visit Harvest's website for details, tutorials

100 Jan 03, 2023
Python sample codes for robotics algorithms.

PythonRobotics Python codes for robotics algorithm. Table of Contents What is this? Requirements Documentation How to use Localization Extended Kalman

Atsushi Sakai 17.2k Jan 01, 2023
So far implements A* will add more later

Pathfinding_Visualization Finds the shortest path between two nodes. The light blue path is the shortest path. The black nodes are barriers. Created i

Lukas DeLoach 1 Jan 18, 2022
N Queen Problem using Genetic Algorithm

The N Queen is the problem of placing N chess queens on an N×N chessboard so that no two queens attack each other.

Mahdi Hassanzadeh 2 Nov 11, 2022
Path finding algorithm visualizer with python

path-finding-algorithm-visualizer ~ click on the grid to place the starting block and then click elsewhere to add the end block ~ click again to place

izumi 1 Oct 31, 2021
Wordle-solver - A program that solves a Wordle using a simple algorithm

Wordle Solver A program that solves a Wordle using a simple algorithm. To see it

Luc Bouchard 3 Feb 13, 2022
There are some basic arithmatic in Pattern Recognization and Machine Learning writed in Python in this repository

There are some basic arithmatic in Pattern Recognization and Machine Learning writed in Python in this repository

1 Nov 19, 2021
Using A * search algorithm and GBFS search algorithm to solve the Romanian problem

Romanian-problem-using-Astar-and-GBFS Using A * search algorithm and GBFS search algorithm to solve the Romanian problem Romanian problem: The agent i

Mahdi Hassanzadeh 6 Nov 22, 2022
A Python library for simulating finite automata, pushdown automata, and Turing machines

Automata Copyright 2016-2021 Caleb Evans Released under the MIT license Automata is a Python 3 library which implements the structures and algorithms

Caleb Evans 219 Dec 12, 2022
This python algorithm creates a simple house floor plan based on a user-provided CSV file.

This python algorithm creates a simple house floor plan based on a user-provided CSV file. The algorithm generates possible router placements and evaluates where a signal will be reached in every roo

Joshua Miller 1 Nov 12, 2021
Optimal skincare partition finder using graph theory

Pigment The problem of partitioning up a skincare regime into parts such that each part does not interfere with itself is equivalent to the minimal cl

Jason Nguyen 1 Nov 22, 2021
Python implementation of Aho-Corasick algorithm for string searching

Python implementation of Aho-Corasick algorithm for string searching

Daniel O'Sullivan 1 Dec 31, 2021
A custom prime algorithm, implementation, and performance code & review

Colander A custom prime algorithm, implementation, and performance code & review Pseudocode Algorithm 1. given a number of primes to find, the followi

Finn Lancaster 3 Dec 17, 2021
PICO is an algorithm for exploiting Reinforcement Learning (RL) on Multi-agent Path Finding tasks.

PICO is an algorithm for exploiting Reinforcement Learning (RL) on Multi-agent Path Finding tasks. It is developed by the Multi-Agent Artificial Intel

21 Dec 20, 2022
marching Squares algorithm in python with clean code.

Marching Squares marching Squares algorithm in python with clean code. Tools Python 3 EasyDraw Creators Mohammad Dori Run the Code Installation Requir

Mohammad Dori 3 Jul 15, 2022
Cormen-Lib - An academic tool for data structures and algorithms courses

The Cormen-lib module is an insular data structures and algorithms library based on the Thomas H. Cormen's Introduction to Algorithms Third Edition. This library was made specifically for administeri

Cormen Lib 12 Aug 18, 2022