A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD.

Overview

8QueensGenetic

A Python project for optimizing the 8 Queens Puzzle using the Genetic Algorithm implemented in PyGAD.

The project uses the Kivy cross-platform Python framework for building the GUI of the 8 queens puzzle. The GUI helps to visualize the solutions reached while the genetic algorithm (GA) is optimizing the problem to find the best solution.

For implementing the genetic algorithm, the PyGAD library is used. Check its documentation here: https://pygad.readthedocs.io

IMPORTANT If you are coming for the code of the tutorial 8 Queen Puzzle Optimization Using a Genetic Algorithm in Python, then it has been moved to the TutorialProject directory on 17 June 2020.

PyGAD Installation

To install PyGAD, simply use pip to download and install the library from PyPI (Python Package Index). The library lives a PyPI at this page https://pypi.org/project/pygad.

For Windows, issue the following command:

pip install pygad

For Linux and Mac, replace pip by use pip3 because the library only supports Python 3.

pip3 install pygad

PyGAD is developed in Python 3.7.3 and depends on NumPy for creating and manipulating arrays and Matplotlib for creating figures. The exact NumPy version used in developing PyGAD is 1.16.4. For Matplotlib, the version is 3.1.0.

Project GUI

The project comes with a GUI built in Kivy, a cross-platform Python framework for building natural user interfaces. Before using the project, install Kivy:

pip install kivy

Because the project is built using Python 3, use pip3 instead of pip for Mac/Linux:

pip3 install kivy

Check this Stackoverflow answer to install other libraries that are essential to run Kivy: https://stackoverflow.com/a/44220712

The main file for this project is called main.py which holds the code for building the GUI and instantiating PyGAD for running the genetic algorithm.

After running the main.py file successfully, the window will appear as given in the figure below. The GUI uses a GridLayout for creating an 8x8 grid. This grid represents the board of the 8 queen puzzle.

main

The objective of the GA is to find the best locations for the 8 queens so that no queen is attacking another horizontally, vertically, or diagonally. This project assumes that no 2 queens are in the same row. As a result, we are sure that no 2 queens will attack each other horizontally. This leaves us to the 2 other types of attacks (vertically and diagonally).

The bottom part of the window has 3 Button widgets and 1 Label widget. From left to right, the description of the 3 Button widgets is as follows:

  • The Initial Population button creates the initial population of the GA.
  • The Show Best Solution button shows the best solution in the last generation the GA stopped at.
  • The Start GA button starts the GA iterations/generations.

The Label widget just prints some informational messages to the user. For example, it prints the fitness value of the best solution when the user presses the Show Best Solution button.

Steps to Use the Project

Follow these steps to use the project:

  1. Run the main.py file.
  2. Press the Initial Population Button.
  3. Press the Start GA Button.

After pressing the Start GA button, the GA uses the initial population and evolves its solutions until reaching the best possible solution.

Behind the scenes, some important stuff was built that includes building the Kivy GUI, instantiating PyGAD, preparing the the fitness function, preparing the callback function, and more. For more information, please check the tutorial titled 8 Queen Puzzle Optimization Using a Genetic Algorithm in Python.

6 Attacks

After running the main.py file and pressing the Initial Population button, the next figure shows one possible initial population in which 6 out of 8 queens are attacking each other.

1  6 attacks

In the Label, the fitness value is calculated as 1.0/number of attacks. In this case, the fitness value is equal to 1.0/6.0 which is 0.1667.

The next figures shows how the GA evolves the solutions until reaching the best solution in which 0 attacks exists.

5 Attacks

2  5 attacks

4 Attacks

3  4 attacks

3 Attacks

4  3 attacks

2 Attacks

5  2 attacks

1 Attack

6  1 attack

0 Attacks (Optimal Solution)

7  0 attack

IMPORTANT

It is very important to note that the GA does not guarantee reaching the optimal solution each time it works. You can make changes in the number of solutions per population, the number of generations, or the number of mutations. Other than doing that, the initial population might also be another factor for not reaching the optimal solution for a given trial.

For More Information

There are different resources that can be used to get started with the building CNN and its Python implementation.

Tutorial: 8 Queen Puzzle Optimization Using a Genetic Algorithm in Python

In 1 May 2019, I wrote a tutorial discussing this project. The tutorial is titled 8 Queen Puzzle Optimization Using a Genetic Algorithm in Python which is published at Heartbeat. Check it at these links:

Tutorial Cover Image

Book: Practical Computer Vision Applications Using Deep Learning with CNNs

You can also check my book cited as Ahmed Fawzy Gad 'Practical Computer Vision Applications Using Deep Learning with CNNs'. Dec. 2018, Apress, 978-1-4842-4167-7 which discusses neural networks, convolutional neural networks, deep learning, genetic algorithm, and more.

Find the book at these links:

Fig04

Citing PyGAD - Bibtex Formatted Citation

If you used PyGAD, please consider adding a citation to the following paper about PyGAD:

@misc{gad2021pygad,
      title={PyGAD: An Intuitive Genetic Algorithm Python Library}, 
      author={Ahmed Fawzy Gad},
      year={2021},
      eprint={2106.06158},
      archivePrefix={arXiv},
      primaryClass={cs.NE}
}

Contact Us

Owner
Ahmed Gad
Ph.D. Student at uOttawa // Machine Learning Researcher & Technical Author https://amazon.com/author/ahmedgad
Ahmed Gad
QDax is a tool to accelerate Quality-Diveristy (QD) algorithms through hardware accelerators and massive parallelism

QDax: Accelerated Quality-Diversity QDax is a tool to accelerate Quality-Diveristy (QD) algorithms through hardware accelerators and massive paralleli

Adaptive and Intelligent Robotics Lab 183 Dec 30, 2022
Data Model built using Logistic Regression Algorithm on Python.

Logistic-Regression Problem Statement: Your client is a retail banking institution. Term deposits are a major source of income for a bank. A term depo

Hemanth Babu Muthineni 0 Dec 25, 2021
Implementation of an ordered dithering algorithm used in computer graphics

Ordered Dithering Project In this project, we use an ordered dithering method to turn an RGB image, first to a gray scale image and then, turn the gra

1 Oct 26, 2021
:computer: Data Structures and Algorithms in Python

Algorithms in Python Implementations of a few algorithms and datastructures for fun and profit! Completed Karatsuba Multiplication Basic Sorting Rabin

Prakhar Srivastav 2.9k Jan 01, 2023
Ralebel is an interpreted, Haitian Creole programming language that aims to help Haitians by starting with the fundamental algorithm

Ralebel is an interpreted, Haitian Creole programming language that aims to help Haitians by starting with the fundamental algorithm

Lub Lorry Lamysère 5 Dec 01, 2022
A Python library for simulating finite automata, pushdown automata, and Turing machines

Automata Copyright 2016-2021 Caleb Evans Released under the MIT license Automata is a Python 3 library which implements the structures and algorithms

Caleb Evans 219 Dec 12, 2022
Algorithmic virtual trading using the neostox platform

Documentation Neostox doesnt have an API Support, so this is a little selenium code to automate strategies How to use Clone this repository and then m

Abhishek Mittal 3 Jul 20, 2022
Multiple Imputation with Random Forests in Python

miceforest: Fast, Memory Efficient Imputation with lightgbm Fast, memory efficient Multiple Imputation by Chained Equations (MICE) with lightgbm. The

Samuel Wilson 202 Dec 31, 2022
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control

Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control.

Martin 1 Jan 01, 2022
N Queen Problem using Genetic Algorithm

The N Queen is the problem of placing N chess queens on an N×N chessboard so that no two queens attack each other.

Mahdi Hassanzadeh 2 Nov 11, 2022
A collection of design patterns/idioms in Python

python-patterns A collection of design patterns and idioms in Python. Current Patterns Creational Patterns: Pattern Description abstract_factory use a

Sakis Kasampalis 36.2k Jan 05, 2023
A lightweight, object-oriented finite state machine implementation in Python with many extensions

transitions A lightweight, object-oriented state machine implementation in Python with many extensions. Compatible with Python 2.7+ and 3.0+. Installa

4.7k Jan 01, 2023
The DarkRift2 networking framework written in Python 3

DarkRiftPy is Darkrift2 written in Python 3. The implementation is fully compatible with the original version. So you can write a client side on Python that connects to a Darkrift2 server written in

Anton Dobryakov 6 May 23, 2022
A fast, pure python implementation of the MuyGPs Gaussian process realization and training algorithm.

Fast implementation of the MuyGPs Gaussian process hyperparameter estimation algorithm MuyGPs is a GP estimation method that affords fast hyperparamet

Lawrence Livermore National Laboratory 13 Dec 02, 2022
Zipline, a Pythonic Algorithmic Trading Library

Zipline, a Pythonic Algorithmic Trading Library

Stefan Jansen 463 Jan 08, 2023
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem Abstract The Travelling Salesman Problem is a well known NP-Hard problem. Given

Gary Sun 55 Jun 15, 2022
Tic-tac-toe with minmax algorithm.

Tic-tac-toe Tic-tac-toe game with minmax algorithm which is a research algorithm his objective is to find the best move to play by going through all t

5 Jan 27, 2022
A Python Package for Portfolio Optimization using the Critical Line Algorithm

A Python Package for Portfolio Optimization using the Critical Line Algorithm

19 Oct 11, 2022
PickMush - A mini study/project on boosting algorithm

PickMush A mini project implementing Boosting Author Shashwat Vaibhav What does it do? Classifies whether Mushroom is edible or is non-edible (binary

Shashwat Vaibahav 3 Nov 08, 2022
Repository for Comparison based sorting algorithms in python

Repository for Comparison based sorting algorithms in python. This was implemented for project one submission for ITCS 6114 Data Structures and Algorithms under the guidance of Dr. Dewan at the Unive

Devashri Khagesh Gadgil 1 Dec 20, 2021