Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life.

Overview

Traveling-Salesman-Problem-with-Genetic-Algorithm

Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life. The algorithm is designed to replicate the natural selection process to carry generation, i.e. survival of the fittest of beings. Standard genetic algorithms are divided into five phases which are:

1.Creating initial population.
2.Calculating fitness.
3.Selecting the best genes.
4.Crossing over.
5.Mutating to introduce variations.

These algorithms can be implemented to find a solution to the optimization problems of various types. One such problem is the Traveling Salesman Problem. The problem says that a salesman is given a set of cities, he has to find the shortest route to as to visit each city exactly once and return to the starting city. Approach: In the following implementation, cities are taken as genes, string generated using these characters is called a chromosome, while a fitness score which is equal to the path length of all the cities mentioned, is used to target a population. Fitness Score is defined as the length of the path described by the gene. Lesser the path length fitter is the gene. The fittest of all the genes in the gene pool survive the population test and move to the next iteration. The number of iterations depends upon the value of a cooling variable. The value of the cooling variable keeps on decreasing with each iteration and reaches a threshold after a certain number of iterations. Algorithm:

  1. Initialize the population randomly.
  2. Determine the fitness of the chromosome.
  3. Until done repeat:
      1. Select parents.
      2. Perform crossover and mutation.
      3. Calculate the fitness of the new population.
      4. Append it to the gene pool.

Pseudo-code

    Initialize procedure GA{
        Set cooling parameter = 0;
        Evaluate population P(t);
        While( Not Done ){
            Parents(t) = Select_Parents(P(t));
            Offspring(t) = Procreate(P(t));
            p(t+1) = Select_Survivors(P(t), Offspring(t));
            t = t + 1; 
        }
     }

The description was from geeksforgeeks website.

Owner
Mahdi Hassanzadeh
I am a computer engineering student at University of Tabriz. I Interested in artificial intelligence and I am a Web developer
Mahdi Hassanzadeh
Primedice like provably fair algorithm

Primedice like provably fair algorithm

Ryu juheon 3 Dec 02, 2022
The DarkRift2 networking framework written in Python 3

DarkRiftPy is Darkrift2 written in Python 3. The implementation is fully compatible with the original version. So you can write a client side on Python that connects to a Darkrift2 server written in

Anton Dobryakov 6 May 23, 2022
RRT algorithm and its optimization

RRT-Algorithm-Visualisation This is a project that aims to develop upon the RRT

Sarannya Bhattacharya 7 Mar 06, 2022
Sign data using symmetric-key algorithm encryption.

Sign data using symmetric-key algorithm encryption. Validate signed data and identify possible validation errors. Uses sha-(1, 224, 256, 385 and 512)/hmac for signature encryption. Custom hash algori

Artur Barseghyan 39 Jun 10, 2022
Using Bayesian, KNN, Logistic Regression to classify spam and non-spam.

Make Sure the dataset file "spamData.mat" is in the folder spam\src Environment: Python --version = 3.7 Third Party: numpy, matplotlib, math, scipy

0 Dec 26, 2021
🌟 Python algorithm team note for programming competition or coding test

🌟 Python algorithm team note for programming competition or coding test

Seung Hoon Lee 3 Feb 25, 2022
Benchmark for Robustness Tests of Control Alrogithms

A gym-like classical control benchmark for evaluating the robustnesses of control and reinforcement learning algorithms.

Kim Taekyung 4 Jan 18, 2022
Pathfinding algorithm based on A*

Pathfinding V1 What is pathfindingV1 ? This program is my very first path finding program, using python and turtle for graphic rendering. How is it wo

Yan'D 6 May 26, 2022
A Python implementation of Jerome Friedman's Multivariate Adaptive Regression Splines

py-earth A Python implementation of Jerome Friedman's Multivariate Adaptive Regression Splines algorithm, in the style of scikit-learn. The py-earth p

431 Dec 15, 2022
With this algorithm you can see all best positions for a Team.

Best Positions Imagine that you have a favorite team, and you want to know until wich position your team can reach With this algorithm you can see all

darlyn 4 Jan 28, 2022
Algorithms for calibrating power grid distribution system models

Distribution System Model Calibration Algorithms The code in this library was developed by Sandia National Laboratories under funding provided by the

Sandia National Laboratories 2 Oct 31, 2022
PICO is an algorithm for exploiting Reinforcement Learning (RL) on Multi-agent Path Finding tasks.

PICO is an algorithm for exploiting Reinforcement Learning (RL) on Multi-agent Path Finding tasks. It is developed by the Multi-Agent Artificial Intel

21 Dec 20, 2022
Solving a card game with three search algorithms: BFS, IDS, and A*

Search Algorithms Overview In this project, we want to solve a card game with three search algorithms. In this card game, we have to sort our cards by

Korosh 5 Aug 04, 2022
🧬 Training the car to do self-parking using a genetic algorithm

🧬 Training the car to do self-parking using a genetic algorithm

Oleksii Trekhleb 652 Jan 03, 2023
A raw implementation of the nearest insertion algorithm to resolve TSP problems in a TXT format.

TSP-Nearest-Insertion A raw implementation of the nearest insertion algorithm to resolve TSP problems in a TXT format. Instructions Load a txt file wi

sjas_Phantom 1 Dec 02, 2021
Tic-tac-toe with minmax algorithm.

Tic-tac-toe Tic-tac-toe game with minmax algorithm which is a research algorithm his objective is to find the best move to play by going through all t

5 Jan 27, 2022
Implementation of core NuPIC algorithms in C++

NuPIC Core This repository contains the C++ source code for the Numenta Platform for Intelligent Computing (NuPIC)

Numenta 270 Nov 19, 2022
Planning Algorithms in AI and Robotics. MSc course at Skoltech Data Science program

Planning Algorithms in AI and Robotics course T2 2021-22 The Planning Algorithms in AI and Robotics course at Skoltech, MS in Data Science, during T2,

Mobile Robotics Lab. at Skoltech 6 Sep 21, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem Abstract The Travelling Salesman Problem is a well known NP-Hard problem. Given

Gary Sun 55 Jun 15, 2022
This repository is an individual project made at BME with the topic of self-driving car simulator and control algorithm.

BME individual project - NEAT based self-driving car This repository is an individual project made at BME with the topic of self-driving car simulator

NGO ANH TUAN 1 Dec 13, 2021