Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python.

Overview

norm-tol-int

Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python.

Methods

The function tolerance_factor computes (by Gauss-Kronod quadrature) the exact tolerance factor k for the two-sided coverage-content and (1-alpha)-confidence tolerance interval

TI = [Xmean - k * S, Xmean + k * S]

where Xmean = mean(X), S = std(X), X = [X_1,...,X_n] is a random sample of size n from the distribution N(mu,sig2) with unknown mean mu and variance sig2.

The algorithm is a Python port of the MATLAB algorithm ToleranceFactor, contributed to the MATLAB Central File Exchange by Viktor Witkovsky. The port attempts to preserve the basic function structure of the algorithm so comparisons back against the MATLAB code are easier to conduct.

For more details on statistical tolerance intervals the technical background on how to compute them, see the following references:

  • Krishnamoorthy K, Mathew T. (2009). Statistical Tolerance Regions: Theory, Applications, and Computation. John Wiley & Sons, Inc., Hoboken, New Jersey. ISBN: 978-0-470-38026-0, 512 pages.
  • Meeker, William Q.; Hahn, Gerald J.; Escobar, Luis A.. Statistical Intervals: A Guide for Practitioners and Researchers (Wiley Series in Probability and Statistics). Wiley.
  • Witkovsky V. On the exact two-sided tolerance intervals for univariate normal distribution and linear regression. Austrian Journal of Statistics 43(4), 2014, 279-92. http:// ajs.data-analysis.at/index.php/ajs/article/viewFile/vol43-4-6/35
  • ISO 16269-6:2014: Statistical interpretation of data - Part 6: Determination of statistical tolerance intervals.
  • Janiga I., Garaj I.: Two-sided tolerance limits of normal distributions with unknown means and unknown common variability. MEASUREMENT SCIENCE REVIEW, Volume 3, Section 1, 2003, 75-78.

Example

The notebook example.ipynb provides a very brief application example.

Environment

The file environment.yml can be used to produce a conda environment suitable for running the example notebook and the unit tests.

Unit Tests

The algorithm accurately reproduces tables of two-sided normal tolerance interval factors from standard sources, including the complete set of tables in ISO 16269-6:2014 Annex F. The unit tests included here represent a sampling of that reproduction for brevity.

To run all the unit tests, invoke the following:

python -m unittest discover -v

License

MIT License

Owner
Jed Ludlow
Multidisciplinary Engineer
Jed Ludlow
Algorithms for calibrating power grid distribution system models

Distribution System Model Calibration Algorithms The code in this library was developed by Sandia National Laboratories under funding provided by the

Sandia National Laboratories 2 Oct 31, 2022
Algoritmos de busca:

Algoritmos-de-Buscas Algoritmos de busca: Abaixo está a interface da aplicação: Ao selecionar o tipo de busca e o caminho, então será realizado o cálc

Elielson Barbosa 5 Oct 04, 2021
Pathfinding algorithm based on A*

Pathfinding V1 What is pathfindingV1 ? This program is my very first path finding program, using python and turtle for graphic rendering. How is it wo

Yan'D 6 May 26, 2022
Supplementary Data for Evolving Reinforcement Learning Algorithms

evolvingrl Supplementary Data for Evolving Reinforcement Learning Algorithms This dataset contains 1000 loss graphs from two experiments: 500 unique g

John Co-Reyes 42 Sep 21, 2022
Implementation of Apriori algorithms via Python

Installing run bellow command for installing all packages pip install -r requirements.txt Data Put csv data under this directory "infrastructure/data

Mahdi Rezaei 0 Jul 25, 2022
Optimal skincare partition finder using graph theory

Pigment The problem of partitioning up a skincare regime into parts such that each part does not interfere with itself is equivalent to the minimal cl

Jason Nguyen 1 Nov 22, 2021
A Python library for simulating finite automata, pushdown automata, and Turing machines

Automata Copyright 2016-2021 Caleb Evans Released under the MIT license Automata is a Python 3 library which implements the structures and algorithms

Caleb Evans 219 Dec 12, 2022
Genetic algorithm which evolves aoe2 DE ai scripts

AlphaScripter Use the power of genetic algorithms to evolve AI scripts for Age of Empires II : Definitive Edition. For now this package runs in AOC Us

6 Nov 04, 2022
Pathfinding visualizer in pygame: A*

Pathfinding Visualizer A* What is this A* algorithm ? Simply put, it is an algorithm that aims to find the shortest possible path between two location

0 Feb 26, 2022
Esse repositório tem como finalidade expor os trabalhos feitos para disciplina de Algoritmos computacionais e estruturais do CEFET-RJ no ano letivo de 2021.

Exercícios de Python 🐍 Esse repositório tem como finalidade expor os trabalhos feitos para disciplina de Algoritmos computacionais e estruturais do C

Rafaela Bezerra de Figueiredo 1 Nov 20, 2021
Algorithmic virtual trading using the neostox platform

Documentation Neostox doesnt have an API Support, so this is a little selenium code to automate strategies How to use Clone this repository and then m

Abhishek Mittal 3 Jul 20, 2022
A lightweight, object-oriented finite state machine implementation in Python with many extensions

transitions A lightweight, object-oriented state machine implementation in Python with many extensions. Compatible with Python 2.7+ and 3.0+. Installa

4.7k Jan 01, 2023
causal-learn: Causal Discovery for Python

causal-learn: Causal Discovery for Python Causal-learn is a python package for causal discovery that implements both classical and state-of-the-art ca

589 Dec 29, 2022
Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life.

Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life. The algorithm is designed to replicate the natural selection process to carry generatio

Mahdi Hassanzadeh 4 Dec 24, 2022
🧬 Training the car to do self-parking using a genetic algorithm

🧬 Training the car to do self-parking using a genetic algorithm

Oleksii Trekhleb 652 Jan 03, 2023
8-puzzle-solver with UCS, ILS, IDA* algorithm

Eight Puzzle 8-puzzle-solver with UCS, ILS, IDA* algorithm pre-usage requirements python3 python3-pip virtualenv prepare enviroment virtualenv -p pyth

Mohsen Arzani 4 Sep 22, 2021
Algorithms and data structures for educational, demonstrational and experimental purposes.

Algorithms and Data Structures (ands) Introduction This project was created for personal use mostly while studying for an exam (starting in the month

50 Dec 06, 2022
TikTok X-Gorgon & X-Khronos Generation Algorithm

TikTok X-Gorgon & X-Khronos Generation Algorithm X-Gorgon and X-Khronos headers are required to call tiktok api. I will provide you API as rental or s

TikTokMate 31 Dec 01, 2022
This project consists of a collaborative filtering algorithm to predict movie reviews ratings from a dataset of Netflix ratings.

Collaborative Filtering - Netflix movie reviews Description This project consists of a collaborative filtering algorithm to predict movie reviews rati

Shashank Kumar 1 Dec 21, 2021
A tictactoe where you never win, implemented using minimax algorithm

Unbeatable_TicTacToe A tictactoe where you never win, implemented using minimax algorithm Requirements Make sure you have the pygame module along with

Jessica Jolly 3 Jul 28, 2022