Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python.

Overview

norm-tol-int

Exact algorithm for computing two-sided statistical tolerance intervals under a normal distribution assumption using Python.

Methods

The function tolerance_factor computes (by Gauss-Kronod quadrature) the exact tolerance factor k for the two-sided coverage-content and (1-alpha)-confidence tolerance interval

TI = [Xmean - k * S, Xmean + k * S]

where Xmean = mean(X), S = std(X), X = [X_1,...,X_n] is a random sample of size n from the distribution N(mu,sig2) with unknown mean mu and variance sig2.

The algorithm is a Python port of the MATLAB algorithm ToleranceFactor, contributed to the MATLAB Central File Exchange by Viktor Witkovsky. The port attempts to preserve the basic function structure of the algorithm so comparisons back against the MATLAB code are easier to conduct.

For more details on statistical tolerance intervals the technical background on how to compute them, see the following references:

  • Krishnamoorthy K, Mathew T. (2009). Statistical Tolerance Regions: Theory, Applications, and Computation. John Wiley & Sons, Inc., Hoboken, New Jersey. ISBN: 978-0-470-38026-0, 512 pages.
  • Meeker, William Q.; Hahn, Gerald J.; Escobar, Luis A.. Statistical Intervals: A Guide for Practitioners and Researchers (Wiley Series in Probability and Statistics). Wiley.
  • Witkovsky V. On the exact two-sided tolerance intervals for univariate normal distribution and linear regression. Austrian Journal of Statistics 43(4), 2014, 279-92. http:// ajs.data-analysis.at/index.php/ajs/article/viewFile/vol43-4-6/35
  • ISO 16269-6:2014: Statistical interpretation of data - Part 6: Determination of statistical tolerance intervals.
  • Janiga I., Garaj I.: Two-sided tolerance limits of normal distributions with unknown means and unknown common variability. MEASUREMENT SCIENCE REVIEW, Volume 3, Section 1, 2003, 75-78.

Example

The notebook example.ipynb provides a very brief application example.

Environment

The file environment.yml can be used to produce a conda environment suitable for running the example notebook and the unit tests.

Unit Tests

The algorithm accurately reproduces tables of two-sided normal tolerance interval factors from standard sources, including the complete set of tables in ISO 16269-6:2014 Annex F. The unit tests included here represent a sampling of that reproduction for brevity.

To run all the unit tests, invoke the following:

python -m unittest discover -v

License

MIT License

Owner
Jed Ludlow
Multidisciplinary Engineer
Jed Ludlow
Resilient Adaptive Parallel sImulator for griD (rapid)

Rapid is an open-source software library that implements a novel “parallel-in-time” (Parareal) algorithm and semi-analytical solutions for co-simulation of integrated transmission and distribution sy

Richard Lincoln 7 Sep 07, 2022
Official implementation of "Path Planning using Neural A* Search" (ICML-21)

Path Planning using Neural A* Search (ICML 2021) This is a repository for the following paper: Ryo Yonetani*, Tatsunori Taniai*, Mohammadamin Barekata

OMRON SINIC X 82 Jan 07, 2023
Implementation of an ordered dithering algorithm used in computer graphics

Ordered Dithering Project In this project, we use an ordered dithering method to turn an RGB image, first to a gray scale image and then, turn the gra

1 Oct 26, 2021
Slight modification to one of the Facebook Salina examples, to test the A2C algorithm on financial series.

Facebook Salina - Gym_AnyTrading Slight modification of Facebook Salina Reinforcement Learning - A2C GPU example for financial series. The gym FOREX d

Francesco Bardozzo 5 Mar 14, 2022
Repository for Comparison based sorting algorithms in python

Repository for Comparison based sorting algorithms in python. This was implemented for project one submission for ITCS 6114 Data Structures and Algorithms under the guidance of Dr. Dewan at the Unive

Devashri Khagesh Gadgil 1 Dec 20, 2021
Minimal pure Python library for working with little-endian list representation of bit strings.

bitlist Minimal Python library for working with bit vectors natively. Purpose This library allows programmers to work with a native representation of

Andrei Lapets 0 Jul 25, 2022
With this algorithm you can see all best positions for a Team.

Best Positions Imagine that you have a favorite team, and you want to know until wich position your team can reach With this algorithm you can see all

darlyn 4 Jan 28, 2022
Gnat - GNAT is NOT Algorithmic Trading

GNAT GNAT is NOT Algorithmic Trading! GNAT is a financial tool with two goals in

Sher Shah 2 Jan 09, 2022
A calculator to test numbers against the collatz conjecture

The Collatz Calculator This is an algorithm custom built by Kyle Dickey, used to test numbers against the simple rules of the Collatz Conjecture. Get

Kyle Dickey 2 Jun 14, 2022
Given a list of tickers, this algorithm generates a recommended portfolio for high-risk investors.

RiskyPortfolioGenerator Given a list of tickers, this algorithm generates a recommended portfolio for high-risk investors. Working in a group, we crea

Victoria Zhao 2 Jan 13, 2022
Tic-tac-toe with minmax algorithm.

Tic-tac-toe Tic-tac-toe game with minmax algorithm which is a research algorithm his objective is to find the best move to play by going through all t

5 Jan 27, 2022
A Python program to easily solve the n-queens problem using min-conflicts algorithm

QueensProblem A program to easily solve the n-queens problem using min-conflicts algorithm Performances estimated with a sample of 1000 different rand

0 Oct 21, 2022
Nature-inspired algorithms are a very popular tool for solving optimization problems.

Nature-inspired algorithms are a very popular tool for solving optimization problems. Numerous variants of nature-inspired algorithms have been develo

NiaOrg 215 Dec 28, 2022
QDax is a tool to accelerate Quality-Diveristy (QD) algorithms through hardware accelerators and massive parallelism

QDax: Accelerated Quality-Diversity QDax is a tool to accelerate Quality-Diveristy (QD) algorithms through hardware accelerators and massive paralleli

Adaptive and Intelligent Robotics Lab 183 Dec 30, 2022
causal-learn: Causal Discovery for Python

causal-learn: Causal Discovery for Python Causal-learn is a python package for causal discovery that implements both classical and state-of-the-art ca

589 Dec 29, 2022
Algorithms and data structures for educational, demonstrational and experimental purposes.

Algorithms and Data Structures (ands) Introduction This project was created for personal use mostly while studying for an exam (starting in the month

50 Dec 06, 2022
A litle algorithm that i made for transform a picture in a spreadsheet.

PicsToSheets How it works? It is an algorithm designed to transform an image into a spreadsheet file. this converts image pixels to color cells of she

Guilherme de Oliveira 1 Nov 12, 2021
This is an implementation of the QuickHull algorithm in Python. I

QuickHull This is an implementation of the QuickHull algorithm in Python. It randomly generates a set of points and finds the convex hull of this set

Anant Joshi 4 Dec 04, 2022
HashDB is a community-sourced library of hashing algorithms used in malware.

HashDB HashDB is a community-sourced library of hashing algorithms used in malware. How To Use HashDB HashDB can be used as a stand alone hashing libr

OALabs 216 Jan 06, 2023
A genetic algorithm written in Python for educational purposes.

Genea: A Genetic Algorithm in Python Genea is a Genetic Algorithm written in Python, for educational purposes. I started writing it for fun, while lea

Dom De Felice 20 Jul 06, 2022