iAWE is a wonderful dataset for those of us who work on Non-Intrusive Load Monitoring (NILM) algorithms.

Overview


Ax

Description

iAWE is a wonderful dataset for those of us who work on Non-Intrusive Load Monitoring (NILM) algorithms. You can find its main page and description via this link. If you are familiar with NILM-TK API, you probably know that you can work with iAWE hdf5 data file in NILM-TK. However I faced some problems that convinced me to Not use NILM-TK and iAWE hdf5 datafile. Instead, I decided to use the iAWE appliance consumption CSV files and preprocess them myself. So if you have problems with NILM-TK API and iAWE hdf5 data file too, this piece of code may help you to prepare 11 appliance consumption data for your NILM algorithm.

Installation

  • First, download the iAWE dataset using this link (also available on iAWE page!).
  • Download the electricity.tar.gz file.


Ax

  • Download the repo and all its folders.
  • Unzip the electricity.tar.gz and copy all 12 CSV file (plus the labels file into the electricity folder of the downloaded repo.
  • Now everythng is ready for you to start the data preprocessing using the main.py file. But before running the code let me show you what kind of problems we had with the original iAWE hdf5 file.

What problems did we solve?

Well, to be honest NILM-TK documentation is not very clear! If you try to use the hdf5 datafile of the datasets that works with NILM-TK, soon you will admit it. Sometimes you find the the similiar questions on stack overflow but when you try them, they simply don't work due to some updates in NILM-TK (undocumented maybe!?). So, having full control on the data was my main incentive to redo the data preprocessing by my self. You see 12 CSV files in your downloaded files. They belong to:

  • main meter (1)
  • main meter (2)
  • fridge
  • air conditioner (1)
  • air conditioner (2)
  • washing machine
  • laptop
  • iron
  • kitchen outlets
  • television
  • water filter
  • water motor The publisher of iAWE dataset has recommended to ignore the water motor CSV file as it is not accurate (so did we!). Each CSV file consists of timestamp, W, VAR, VA, f, V, PF and A columns. timestamp can be read and converted to read time and date by Python libraries. The publisher of dataset have collected time stamps to reduce the size of final data files which means there is no sampling when the appliances are not consuming power. On the other hand the start time of different appliances measurement is not the same so the length, start and end of most csv files are different. When you plot it in NILM-TK it is fine becuase it reads the timestamps and ignores the NA time steps. However when you want to feed this data into your algorithm it will be a problem which needs data preprocessing. To better understand the problem when using the raw data in iAWE dataset, I've plotted W (active power) of the air conditioner which is CSV file number 4.


AC

As you see, when youplot it in Python the NA timestamp will be plotted as a direct line between last available data and the next available one. It is neither human readable (to some extents!) nor NILM algorithm readable. In fact what your NILM algorithm will be fed with is the series of these values because your algorithm has nothing to do with timestamps! See this is what NILM algorithm sees as the AC power consumption:


AC WO

Now to make it both human readable and NILM algorithm readable, I did as below: (I've commented the code so you can see what is happening in every part of the code)

  • Loaded all CSV files in a dictionary of Dataframes with CSV file orders
  • Measured the lowes and highest timestamp in order to know the length of the measurement period (they have different lengthes!)
  • Created a big dataframe of zeros with from lowest timestamp to the highest one as its index
  • Used the update method on dataframes to transfer the values of dataframes to the big dataframes of zeros (Now all of them have the same length)
  • Putting all dfs into a dictionary of dataframes
  • Casting all the dataframes into the efficient period of sampling (Because now we know which part of sampling is useless)
  • Removing NAN values
  • Dropping unwanted columns
  • Filling NA values with last available value in dataframes
  • Saving all the dataframes as CSV files in the prepared data folder
  • Done!


AC WO

Conclusion

Basically, what we have here after running this code is 11 CSV files of W, VAR, VA, f, V, PF and A for 11 different meters. Prepared CSV file are all of the same length without NAN or NA values which are ready to be fed to any NILM algorithm. Despite the fact that I've done these changes to iAWE dataset, I'm sure the publishers of this dataset have much better solution via NILM-TK to have such an output. However due to lack of documentation or changes in their code I prefered to do this data preprocessing myself. Hope you enjoy it!

Owner
Mozaffar Etezadifar
NILM and RL researcher @ Polytechnique Montreal
Mozaffar Etezadifar
There are some basic arithmatic in Pattern Recognization and Machine Learning writed in Python in this repository

There are some basic arithmatic in Pattern Recognization and Machine Learning writed in Python in this repository

1 Nov 19, 2021
Solving a card game with three search algorithms: BFS, IDS, and A*

Search Algorithms Overview In this project, we want to solve a card game with three search algorithms. In this card game, we have to sort our cards by

Korosh 5 Aug 04, 2022
Esse repositório tem como finalidade expor os trabalhos feitos para disciplina de Algoritmos computacionais e estruturais do CEFET-RJ no ano letivo de 2021.

Exercícios de Python 🐍 Esse repositório tem como finalidade expor os trabalhos feitos para disciplina de Algoritmos computacionais e estruturais do C

Rafaela Bezerra de Figueiredo 1 Nov 20, 2021
Better control of your asyncio tasks

quattro: task control for asyncio quattro is an Apache 2 licensed library, written in Python, for task control in asyncio applications. quattro is inf

Tin Tvrtković 37 Dec 28, 2022
Implementation of Apriori algorithms via Python

Installing run bellow command for installing all packages pip install -r requirements.txt Data Put csv data under this directory "infrastructure/data

Mahdi Rezaei 0 Jul 25, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem Abstract The Travelling Salesman Problem is a well known NP-Hard problem. Given

Gary Sun 55 Jun 15, 2022
This project consists of a collaborative filtering algorithm to predict movie reviews ratings from a dataset of Netflix ratings.

Collaborative Filtering - Netflix movie reviews Description This project consists of a collaborative filtering algorithm to predict movie reviews rati

Shashank Kumar 1 Dec 21, 2021
Data Model built using Logistic Regression Algorithm on Python.

Logistic-Regression Problem Statement: Your client is a retail banking institution. Term deposits are a major source of income for a bank. A term depo

Hemanth Babu Muthineni 0 Dec 25, 2021
Python package to monitor the power consumption of any algorithm

CarbonAI This project aims at creating a python package that allows you to monitor the power consumption of any python function. Documentation The com

Capgemini Invent France 36 Nov 11, 2022
A fast python implementation of the SimHash algorithm.

This Python package provides hashing algorithms for computing cohort ids of users based on their browsing history. As such, it may be used to compute cohort ids of users following Google's Federated

Hybrid Theory 19 Dec 15, 2022
This repository is not maintained

This repository is no longer maintained, but is being kept around for educational purposes. If you want a more complete algorithms repo check out: htt

Nic Young 2.8k Dec 30, 2022
Repository for Comparison based sorting algorithms in python

Repository for Comparison based sorting algorithms in python. This was implemented for project one submission for ITCS 6114 Data Structures and Algorithms under the guidance of Dr. Dewan at the Unive

Devashri Khagesh Gadgil 1 Dec 20, 2021
With this algorithm you can see all best positions for a Team.

Best Positions Imagine that you have a favorite team, and you want to know until wich position your team can reach With this algorithm you can see all

darlyn 4 Jan 28, 2022
A command line tool for memorizing algorithms in Python by typing them.

Algo Drills A command line tool for memorizing algorithms in Python by typing them. In alpha and things will change. How it works Type out an algorith

Travis Jungroth 43 Dec 02, 2022
Visualisation for sorting algorithms. Version 2.0

Visualisation for sorting algorithms v2. Upped a notch from version 1. This program provides animates simple, common and popular sorting algorithms, t

Ben Woo 7 Nov 08, 2022
8-puzzle-solver with UCS, ILS, IDA* algorithm

Eight Puzzle 8-puzzle-solver with UCS, ILS, IDA* algorithm pre-usage requirements python3 python3-pip virtualenv prepare enviroment virtualenv -p pyth

Mohsen Arzani 4 Sep 22, 2021
A Python Package for Portfolio Optimization using the Critical Line Algorithm

A Python Package for Portfolio Optimization using the Critical Line Algorithm

19 Oct 11, 2022
Minimal examples of data structures and algorithms in Python

Pythonic Data Structures and Algorithms Minimal and clean example implementations of data structures and algorithms in Python 3. Contributing Thanks f

Keon 22k Jan 09, 2023
Implements (high-dimenstional) clustering algorithm

Description Implements (high-dimenstional) clustering algorithm described in https://arxiv.org/pdf/1804.02624.pdf Dependencies python3 pytorch (=0.4)

Eric Elmoznino 5 Dec 27, 2022
A Python program to easily solve the n-queens problem using min-conflicts algorithm

QueensProblem A program to easily solve the n-queens problem using min-conflicts algorithm Performances estimated with a sample of 1000 different rand

0 Oct 21, 2022