iAWE is a wonderful dataset for those of us who work on Non-Intrusive Load Monitoring (NILM) algorithms.

Overview


Ax

Description

iAWE is a wonderful dataset for those of us who work on Non-Intrusive Load Monitoring (NILM) algorithms. You can find its main page and description via this link. If you are familiar with NILM-TK API, you probably know that you can work with iAWE hdf5 data file in NILM-TK. However I faced some problems that convinced me to Not use NILM-TK and iAWE hdf5 datafile. Instead, I decided to use the iAWE appliance consumption CSV files and preprocess them myself. So if you have problems with NILM-TK API and iAWE hdf5 data file too, this piece of code may help you to prepare 11 appliance consumption data for your NILM algorithm.

Installation

  • First, download the iAWE dataset using this link (also available on iAWE page!).
  • Download the electricity.tar.gz file.


Ax

  • Download the repo and all its folders.
  • Unzip the electricity.tar.gz and copy all 12 CSV file (plus the labels file into the electricity folder of the downloaded repo.
  • Now everythng is ready for you to start the data preprocessing using the main.py file. But before running the code let me show you what kind of problems we had with the original iAWE hdf5 file.

What problems did we solve?

Well, to be honest NILM-TK documentation is not very clear! If you try to use the hdf5 datafile of the datasets that works with NILM-TK, soon you will admit it. Sometimes you find the the similiar questions on stack overflow but when you try them, they simply don't work due to some updates in NILM-TK (undocumented maybe!?). So, having full control on the data was my main incentive to redo the data preprocessing by my self. You see 12 CSV files in your downloaded files. They belong to:

  • main meter (1)
  • main meter (2)
  • fridge
  • air conditioner (1)
  • air conditioner (2)
  • washing machine
  • laptop
  • iron
  • kitchen outlets
  • television
  • water filter
  • water motor The publisher of iAWE dataset has recommended to ignore the water motor CSV file as it is not accurate (so did we!). Each CSV file consists of timestamp, W, VAR, VA, f, V, PF and A columns. timestamp can be read and converted to read time and date by Python libraries. The publisher of dataset have collected time stamps to reduce the size of final data files which means there is no sampling when the appliances are not consuming power. On the other hand the start time of different appliances measurement is not the same so the length, start and end of most csv files are different. When you plot it in NILM-TK it is fine becuase it reads the timestamps and ignores the NA time steps. However when you want to feed this data into your algorithm it will be a problem which needs data preprocessing. To better understand the problem when using the raw data in iAWE dataset, I've plotted W (active power) of the air conditioner which is CSV file number 4.


AC

As you see, when youplot it in Python the NA timestamp will be plotted as a direct line between last available data and the next available one. It is neither human readable (to some extents!) nor NILM algorithm readable. In fact what your NILM algorithm will be fed with is the series of these values because your algorithm has nothing to do with timestamps! See this is what NILM algorithm sees as the AC power consumption:


AC WO

Now to make it both human readable and NILM algorithm readable, I did as below: (I've commented the code so you can see what is happening in every part of the code)

  • Loaded all CSV files in a dictionary of Dataframes with CSV file orders
  • Measured the lowes and highest timestamp in order to know the length of the measurement period (they have different lengthes!)
  • Created a big dataframe of zeros with from lowest timestamp to the highest one as its index
  • Used the update method on dataframes to transfer the values of dataframes to the big dataframes of zeros (Now all of them have the same length)
  • Putting all dfs into a dictionary of dataframes
  • Casting all the dataframes into the efficient period of sampling (Because now we know which part of sampling is useless)
  • Removing NAN values
  • Dropping unwanted columns
  • Filling NA values with last available value in dataframes
  • Saving all the dataframes as CSV files in the prepared data folder
  • Done!


AC WO

Conclusion

Basically, what we have here after running this code is 11 CSV files of W, VAR, VA, f, V, PF and A for 11 different meters. Prepared CSV file are all of the same length without NAN or NA values which are ready to be fed to any NILM algorithm. Despite the fact that I've done these changes to iAWE dataset, I'm sure the publishers of this dataset have much better solution via NILM-TK to have such an output. However due to lack of documentation or changes in their code I prefered to do this data preprocessing myself. Hope you enjoy it!

Owner
Mozaffar Etezadifar
NILM and RL researcher @ Polytechnique Montreal
Mozaffar Etezadifar
Rover. Finding the shortest pass by Dijkstra’s shortest path algorithm

rover Rover. Finding the shortest path by Dijkstra’s shortest path algorithm Задача Вы — инженер, проектирующий роверы-беспилотники. Вам надо спроекти

1 Nov 11, 2021
Python Package for Reflection Ultrasound Computed Tomography (RUCT) Delay And Sum (DAS) Algorithm

pyruct Python Package for Reflection Ultrasound Computed Tomography (RUCT) Delay And Sum (DAS) Algorithm The imaging setup is explained in these paper

Berkan Lafci 21 Dec 12, 2022
Genetic algorithm which evolves aoe2 DE ai scripts

AlphaScripter Use the power of genetic algorithms to evolve AI scripts for Age of Empires II : Definitive Edition. For now this package runs in AOC Us

6 Nov 04, 2022
Python algorithm to determine the optimal elevation threshold of a GNSS receiver, by using a statistical test known as the Brown-Forsynthe test.

Levene and Brown-Forsynthe: Test for variances Application to Global Navigation Satellite Systems (GNSS) Python algorithm to determine the optimal ele

Nicolas Gachancipa 2 Aug 09, 2022
The test data, code and detailed description of the AW t-SNE algorithm

AW-t-SNE The test data, code and result of the AW t-SNE algorithm Structure of the folder Datasets: This folder contains two datasets, the MNIST datas

1 Mar 09, 2022
Optimal skincare partition finder using graph theory

Pigment The problem of partitioning up a skincare regime into parts such that each part does not interfere with itself is equivalent to the minimal cl

Jason Nguyen 1 Nov 22, 2021
A simple library for implementing common design patterns.

PyPattyrn from pypattyrn.creational.singleton import Singleton class DummyClass(object, metaclass=Singleton): # DummyClass is now a Singleton!

1.7k Jan 01, 2023
A collection of Python Scripts made for fun, while exploring Python 🐍

JFF-Python-Scripts A collection of Python Scripts made for fun, while exploring Python 🐍 Inspiration 💡 Many of the programs in this repository are i

Pushkar Patel 16 Oct 07, 2022
BCI datasets and algorithms

Brainda Welcome! First and foremost, Welcome! Thank you for visiting the Brainda repository which was initially released at this repo and reorganized

52 Jan 04, 2023
How on earth can I ever think of a solution like that in an interview?!

fuck-coding-interviews This repository is created by an awkward programmer who always struggles with coding problems on LeetCode, even with some Easy

Vinta Chen 613 Jan 08, 2023
Algorithmic virtual trading using the neostox platform

Documentation Neostox doesnt have an API Support, so this is a little selenium code to automate strategies How to use Clone this repository and then m

Abhishek Mittal 3 Jul 20, 2022
implementation of the KNN algorithm on crab biometrics dataset for CS16

crab-knn implementation of the KNN algorithm in Python applied to biometrics data of purple rock crabs (leptograpsus variegatus) to classify the sex o

Andrew W. Chen 1 Nov 18, 2021
Wordle-solver - A program that solves a Wordle using a simple algorithm

Wordle Solver A program that solves a Wordle using a simple algorithm. To see it

Luc Bouchard 3 Feb 13, 2022
A lightweight, pure-Python mobile robot simulator designed for experiments in Artificial Intelligence (AI) and Machine Learning, especially for Jupyter Notebooks

aitk.robots A lightweight Python robot simulator for JupyterLab, Notebooks, and other Python environments. Goals A lightweight mobile robotics simulat

3 Oct 22, 2021
The DarkRift2 networking framework written in Python 3

DarkRiftPy is Darkrift2 written in Python 3. The implementation is fully compatible with the original version. So you can write a client side on Python that connects to a Darkrift2 server written in

Anton Dobryakov 6 May 23, 2022
Tic-tac-toe with minmax algorithm.

Tic-tac-toe Tic-tac-toe game with minmax algorithm which is a research algorithm his objective is to find the best move to play by going through all t

5 Jan 27, 2022
Algorithm and Structured Programming course project for the first semester of the Internet Systems course at IFPB

Algorithm and Structured Programming course project for the first semester of the Internet Systems course at IFPB

Gabriel Macaúbas 3 May 21, 2022
Our implementation of Gillespie's Stochastic Simulation Algorithm (SSA)

SSA Our implementation of Gillespie's Stochastic Simulation Algorithm (SSA) Requirements python =3.7 numpy pandas matplotlib pyyaml Command line usag

Anoop Lab 1 Jan 27, 2022
This is the code repository for 40 Algorithms Every Programmer Should Know , published by Packt.

40 Algorithms Every Programmer Should Know, published by Packt

Packt 721 Jan 02, 2023
Search algorithm implementations meant for teaching

Search-py A collection of search algorithms for teaching and experimenting. Non-adversarial Search There’s a heavy separation of concerns which leads

Dietrich Daroch 5 Mar 07, 2022