BCI datasets and algorithms

Related tags

Algorithmsbrainda
Overview

Brainda

Welcome!

First and foremost, Welcome!

Thank you for visiting the Brainda repository which was initially released at this repo and reorganized here. This project is meant to provide datasets and decoding algorithms for BCI research, using python, as a part of the MetaBCI project which aims to provide a python platform for BCI users to design paradigm, collect data, process signals, present feedbacks and drive robots.

This document is a hub to give you some information about the project. Jump straight to one of the sections below, or just scroll down to find out more.

What are we doing?

The problem

  • BCI datasets come in different formats and standards
  • It's tedious to figure out the details of the data
  • Lack of python implementations of modern decoding algorithms

If someone new to the BCI wants to do some interesting research, most of their time would be spent on preprocessing the data or reproducing the algorithm in the paper.

The solution

The Brainda will:

  • Allow users to load the data easily without knowing the details
  • Provide flexible hook functions to control the preprocessing flow
  • Provide the latest decoding algorithms

The goal of the Brainda is to make researchers focus on improving their own BCI algorithms without wasting too much time on preliminary preparations.

Features

  • Improvements to MOABB APIs

    • add hook functions to control the preprocessing flow more easily
    • use joblib to accelerate the data loading
    • add proxy options for network conneciton issues
    • add more information in the meta of data
    • other small changes
  • Supported Datasets

    • MI Datasets
      • AlexMI
      • BNCI2014001, BNCI2014004
      • PhysionetMI, PhysionetME
      • Cho2017
      • MunichMI
      • Schirrmeister2017
      • Weibo2014
      • Zhou2016
    • SSVEP Datasets
      • Nakanishi2015
      • Wang2016
      • BETA
  • Implemented BCI algorithms

    • Decomposition Methods
      • SPoC, CSP, MultiCSP and FBCSP
      • CCA, itCCA, MsCCA, ExtendCCA, ttCCA, MsetCCA, MsetCCA-R, TRCA, TRCA-R, SSCOR and TDCA
      • DSP
    • Manifold Learning
      • Basic Riemannian Geometry operations
      • Alignment methods
      • Riemann Procustes Analysis
    • Deep Learning
      • ShallowConvNet
      • EEGNet
      • ConvCA
      • GuneyNet
    • Transfer Learning
      • MEKT
      • LST

Installation

  1. Clone the repo
    git clone https://github.com/TBC-TJU/brainda.git
  2. Change to the project directory
    cd brainda
  3. Install all requirements
    pip install -r requirements.txt 
  4. Install brainda package with the editable mode
    pip install -e .

Usage

Data Loading

In basic case, we can load data with the recommended options from the dataset maker.

from brainda.datasets import AlexMI
from brainda.paradigms import MotorImagery

dataset = AlexMI() # declare the dataset
paradigm = MotorImagery(
    channels=None, 
    events=None,
    intervals=None,
    srate=None
) # declare the paradigm, use recommended Options

print(dataset) # see basic dataset information

# X,y are numpy array and meta is pandas dataFrame
X, y, meta = paradigm.get_data(
    dataset, 
    subjects=dataset.subjects, 
    return_concat=True, 
    n_jobs=None, 
    verbose=False)
print(X.shape)
print(meta)

If you don't have the dataset yet, the program would automatically download a local copy, generally in your ~/mne_data folder. However, you can always download the dataset in advance and store it in your specific folder.

dataset.download_all(
    path='/your/datastore/folder', # save folder
    force_update=False, # re-download even if the data exist
    proxies=None, # add proxy if you need, the same as the Request package
    verbose=None
)

# If you encounter network connection issues, try this
# dataset.download_all(
#     path='/your/datastore/folder', # save folder
#     force_update=False, # re-download even if the data exist
#     proxies={
#         'http': 'socks5://user:[email protected]:port',
#         'https': 'socks5://user:[email protected]:port'
#     },
#     verbose=None
# )

You can also choose channels, events, intervals, srate, and subjects yourself.

paradigm = MotorImagery(
    channels=['C3', 'CZ', 'C4'], 
    events=['right_hand', 'feet'],
    intervals=[(0, 2)], # 2 seconds
    srate=128
)

X, y, meta = paradigm.get_data(
    dataset, 
    subjects=[2, 4], 
    return_concat=True, 
    n_jobs=None, 
    verbose=False)
print(X.shape)
print(meta)

or use different intervals for events. In this case, X, y and meta should be returned in dict.

dataset = AlexMI()
paradigm = MotorImagery(
    channels=['C3', 'CZ', 'C4'], 
    events=['right_hand', 'feet'],
    intervals=[(0, 2), (0, 1)], # 2s for right_hand, 1s for feet
    srate=128
)

X, y, meta = paradigm.get_data(
    dataset, 
    subjects=[2, 4], 
    return_concat=False, 
    n_jobs=None, 
    verbose=False)
print(X['right_hand'].shape, X['feet'].shape)

Preprocessing

Here is the flow of paradigm.get_data function:

brainda provides 3 hooks that enable you to control the preprocessing flow in paradigm.get_data. With these hooks, you can operate data just like MNE typical flow:

dataset = AlexMI()
paradigm = MotorImagery()

# add 6-30Hz bandpass filter in raw hook
def raw_hook(raw, caches):
    # do something with raw object
    raw.filter(6, 30, 
        l_trans_bandwidth=2, 
        h_trans_bandwidth=5, 
        phase='zero-double')
    caches['raw_stage'] = caches.get('raw_stage', -1) + 1
    return raw, caches

def epochs_hook(epochs, caches):
    # do something with epochs object
    print(epochs.event_id)
    caches['epoch_stage'] = caches.get('epoch_stage', -1) + 1
    return epochs, caches

def data_hook(X, y, meta, caches):
    # retrive caches from the last stage
    print("Raw stage:{},Epochs stage:{}".format(caches['raw_stage'], caches['epoch_stage']))
    # do something with X, y, and meta
    caches['data_stage'] = caches.get('data_stage', -1) + 1
    return X, y, meta, caches

paradigm.register_raw_hook(raw_hook)
paradigm.register_epochs_hook(epochs_hook)
paradigm.register_data_hook(data_hook)

X, y, meta = paradigm.get_data(
    dataset, 
    subjects=[1], 
    return_concat=True, 
    n_jobs=None, 
    verbose=False)

If the dataset maker provides these hooks in the dataset, brainda would call these hooks implictly. But you can always replace them with the above code.

Machine Learning Pipeline

Now it's time to do some real BCI algorithms. Here is a demo of CSP for 2-class MI:

import numpy as np

from sklearn.svm import SVC
from sklearn.pipeline import make_pipeline

from brainda.datasets import AlexMI
from brainda.paradigms import MotorImagery
from brainda.algorithms.utils.model_selection import (
    set_random_seeds,
    generate_kfold_indices, match_kfold_indices)
from brainda.algorithms.decomposition import CSP

dataset = AlexMI()
paradigm = MotorImagery(events=['right_hand', 'feet'])

# add 6-30Hz bandpass filter in raw hook
def raw_hook(raw, caches):
    # do something with raw object
    raw.filter(6, 30, l_trans_bandwidth=2, h_trans_bandwidth=5, phase='zero-double', verbose=False)
    return raw, caches

paradigm.register_raw_hook(raw_hook)

X, y, meta = paradigm.get_data(
    dataset, 
    subjects=[3], 
    return_concat=True, 
    n_jobs=None, 
    verbose=False)

# 5-fold cross validation
set_random_seeds(38)
kfold = 5
indices = generate_kfold_indices(meta, kfold=kfold)

# CSP with SVC classifier
estimator = make_pipeline(*[
    CSP(n_components=4),
    SVC()
])

accs = []
for k in range(kfold):
    train_ind, validate_ind, test_ind = match_kfold_indices(k, meta, indices)
    # merge train and validate set
    train_ind = np.concatenate((train_ind, validate_ind))
    p_labels = estimator.fit(X[train_ind], y[train_ind]).predict(X[test_ind])
    accs.append(np.mean(p_labels==y[test_ind]))
print(np.mean(accs))

If everything is fine, you will get the accuracy about 0.75.

Who are we?

The MetaBCI project is carried out by researchers from

  • Academy of Medical Engineering and Translational Medicine, Tianjin University, China
  • Tianjin Brain Center, China

Dr.Lichao Xu is the main contributor to the Brainda repository.

What do we need?

You! In whatever way you can help.

We need expertise in programming, user experience, software sustainability, documentation and technical writing and project management.

We'd love your feedback along the way.

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated. Especially welcome to submit BCI algorithms.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Email: [email protected]

Acknowledgements

marching rectangles algorithm in python with clean code.

Marching Rectangles marching rectangles algorithm in python with clean code. Tools Python 3 EasyDraw Creators Mohammad Dori Run the Code Installation

Mohammad Dori 3 Jul 15, 2022
Algorithmic Trading with Python

Source code for Algorithmic Trading with Python (2020) by Chris Conlan

Chris Conlan 1.3k Jan 03, 2023
My own Unicode compression algorithm

Zee Code ZCode is a custom compression algorithm I originally developed for a competition held for the Spring 2019 Datastructures and Algorithms cours

Vahid Zehtab 2 Oct 20, 2021
The test data, code and detailed description of the AW t-SNE algorithm

AW-t-SNE The test data, code and result of the AW t-SNE algorithm Structure of the folder Datasets: This folder contains two datasets, the MNIST datas

1 Mar 09, 2022
This is an Airport Scheduling Time table implemented using Genetic Algorithm

This is an Airport Scheduling Time table implemented using Genetic Algorithm In this The scheduling is performed on the basisi of that no two Air planes are arriving or departing at the same runway a

1 Jan 06, 2022
A Python description of the Kinematic Bicycle Model with an animated example.

Kinematic Bicycle Model Abstract A python library for the Kinematic Bicycle model. The Kinematic Bicycle is a compromise between the non-linear and li

Winston H. 36 Dec 23, 2022
Given a list of tickers, this algorithm generates a recommended portfolio for high-risk investors.

RiskyPortfolioGenerator Given a list of tickers, this algorithm generates a recommended portfolio for high-risk investors. Working in a group, we crea

Victoria Zhao 2 Jan 13, 2022
A GUI visualization of QuickSort algorithm

QQuickSort A simple GUI visualization of QuickSort algorithm. It only uses PySide6, it does not have any other external dependency. How to run Install

Jaime R. 2 Dec 24, 2021
Implementation of an ordered dithering algorithm used in computer graphics

Ordered Dithering Project In this project, we use an ordered dithering method to turn an RGB image, first to a gray scale image and then, turn the gra

1 Oct 26, 2021
A priority of preferences for teacher assignment problem

Genetic-Algorithm-for-Assignment-Problem A priority of preferences for teacher assignment problem Keywords k-partition; clustering; education 4.0 Abst

hades 2 Oct 31, 2022
A simple python implementation of A* and bfs algorithm solving Eight-Puzzle

A simple python implementation of A* and bfs algorithm solving Eight-Puzzle

2 May 22, 2022
A selection of a few algorithms used to sort or search an array

Sort and search algorithms This repository has some common search / sort algorithms written in python, I also included the pseudocode of each algorith

0 Apr 02, 2022
A python implementation of the Basic Photometric Stereo Algorithm

Photometric-Stereo A python implementation of the Basic Photometric Stereo Algorithm Result Usage run Photometric_Stereo.py Code Tree |data #原始数据,tga格

20 Dec 19, 2022
Genetic algorithm which evolves aoe2 DE ai scripts

AlphaScripter Use the power of genetic algorithms to evolve AI scripts for Age of Empires II : Definitive Edition. For now this package runs in AOC Us

6 Nov 04, 2022
Genius Square puzzle solver in Python

Genius Square puzzle solver in Python

James 3 Dec 15, 2022
causal-learn: Causal Discovery for Python

causal-learn: Causal Discovery for Python Causal-learn is a python package for causal discovery that implements both classical and state-of-the-art ca

589 Dec 29, 2022
A Python implementation of Jerome Friedman's Multivariate Adaptive Regression Splines

py-earth A Python implementation of Jerome Friedman's Multivariate Adaptive Regression Splines algorithm, in the style of scikit-learn. The py-earth p

431 Dec 15, 2022
Esse repositório tem como finalidade expor os trabalhos feitos para disciplina de Algoritmos computacionais e estruturais do CEFET-RJ no ano letivo de 2021.

Exercícios de Python 🐍 Esse repositório tem como finalidade expor os trabalhos feitos para disciplina de Algoritmos computacionais e estruturais do C

Rafaela Bezerra de Figueiredo 1 Nov 20, 2021
Primedice like provably fair algorithm

Primedice like provably fair algorithm

Ryu juheon 3 Dec 02, 2022
BCI datasets and algorithms

Brainda Welcome! First and foremost, Welcome! Thank you for visiting the Brainda repository which was initially released at this repo and reorganized

52 Jan 04, 2023