Parameterising Simulated Annealing for the Travelling Salesman Problem

Related tags

Algorithmsalgorithms
Overview

Parameterising Simulated Annealing for the Travelling Salesman Problem

animated

Abstract

The Travelling Salesman Problem is a well known NP-Hard problem. Given a list of cities, find the shortest path that visits all cities once.

Simulated annealing is a well known stochastic method for solving optimisation problems and is a well known non-exact algorithm for solving the TSP. However, it's effectiveness is dependent on initial parameters such as the starting temperature and cooling rate which is often chosen empirically.

The goal of this project is to:

  • Determine if the optimal starting temperature and cooling rate can be parameterised off the input
  • Visualise the solving process of the TSP

Usage

Running the code

Examples of common commands to run the files are shown below. However, both src/main.py and src/benchmark.py have a --help that explains the optional flags.

# To visualise annealing on a problem set from the input file
python3 -m src.main -f <input_file>

# To visualise TSP on a random graph with 
   
     number of cities
   
python3 -m src.main -c <city_count>

# Benchmark the parameters using all problems in the data folder
python3 -m src.benchmark

Keyboard Controls

There are also ways to control the visualisation through key presses while it plays.

Key Action
Space Bar Pauses or unpauses the solver
Left / Right arrow Control how frequently the frame is redrawn
c Toggles showing the cities as nodes (this is off by default as it causes lag)

Creating your own model

If you would like to create your own instance of the TSP problem and visualise it:

  1. Create a new file
  2. Within this file ensure you have the line NODE_COORD_SECTION, and below that EOF.
  3. Between those two lines, you can place the coordinates of the cities, i.e. for the nth city, have a line like , where x and y are the x and y coordinates of the city.
  4. Run python3 -m src.main -f , where is the path to the file you have just made.

Files

File / Folder Purpose
data This contains TSP problems in .tsp files and their optimal solution in .opt.tour files, taken from TSPLIB
report The report detailing the Simulated Annealing and the experimentation
results The output directory containing results of the tests
src/benchmark.py Code for benchmarking different temperatures and cooling rates using the problems in the data folder
src/main.py Driver code to start the visualisation
src/setup.py Code for loading in city coordinates from a file, or generating random ones
src/solvers.py Module containing the python implementations of TSP solving algorithms

FAQ

What do you use to generate the graphics?

This project uses the p5py library for visualisation. Unfortunately, (to of my knowledge) this may not work with WSL.

What are the results of your research?

Idk. Still working on it.

What can I do to contribute?

Pog.

This is more of a "what I would I do if I have more time" but whatever, let's say you actually are interested. Disclaimer - the code isn't particularly polished (from me pivoting project ideas multiple times).

  • If you're up for a challenge, it would be interesting to implement LKH (Lin-Kernighan heuristic) efficiently
  • Implement other algorithms - they just need to extend the Solver abstract class to work with the frontend
  • Add a whatever city you want and it's coordinates to data/world.tsp!
Owner
Gary Sun
hi
Gary Sun
A Python Package for Portfolio Optimization using the Critical Line Algorithm

A Python Package for Portfolio Optimization using the Critical Line Algorithm

19 Oct 11, 2022
All Algorithms implemented in Python

The Algorithms - Python All algorithms implemented in Python (for education) These implementations are for learning purposes only. Therefore they may

The Algorithms 150.6k Jan 03, 2023
A collection of design patterns/idioms in Python

python-patterns A collection of design patterns and idioms in Python. Current Patterns Creational Patterns: Pattern Description abstract_factory use a

Sakis Kasampalis 36.2k Jan 05, 2023
A minimal implementation of the IQRM interference flagging algorithm for radio pulsar and transient searches

A minimal implementation of the IQRM interference flagging algorithm for radio pulsar and transient searches. This module only provides the algorithm that infers a channel mask from some spectral sta

Vincent Morello 6 Nov 29, 2022
Programming Foundations Algorithms With Python

Programming-Foundations-Algorithms Algorithms purpose to solve a specific proplem with a sequential sets of steps for instance : if you need to add di

omar nafea 1 Nov 01, 2021
Implementation of core NuPIC algorithms in C++

NuPIC Core This repository contains the C++ source code for the Numenta Platform for Intelligent Computing (NuPIC)

Numenta 270 Nov 19, 2022
CLI Eight Puzzle mini-game featuring BFS, DFS, Greedy and A* searches as solver algorithms.

🕹 Eight Puzzle CLI Jogo do quebra-cabeças de 8 peças em linha de comando desenvolvido para a disciplina de Inteligência Artificial. Escrito em python

Lucas Nakahara 1 Jun 30, 2021
It is a platform that implements some path planning algorithms.

PathPlanningAlgorithms It is a platform that implements some path planning algorithms. Main dependence: python3.7, opencv4.1.1.26 (for image show) Tip

5 Feb 24, 2022
The DarkRift2 networking framework written in Python 3

DarkRiftPy is Darkrift2 written in Python 3. The implementation is fully compatible with the original version. So you can write a client side on Python that connects to a Darkrift2 server written in

Anton Dobryakov 6 May 23, 2022
Benchmark for Robustness Tests of Control Alrogithms

A gym-like classical control benchmark for evaluating the robustnesses of control and reinforcement learning algorithms.

Kim Taekyung 4 Jan 18, 2022
A lightweight, pure-Python mobile robot simulator designed for experiments in Artificial Intelligence (AI) and Machine Learning, especially for Jupyter Notebooks

aitk.robots A lightweight Python robot simulator for JupyterLab, Notebooks, and other Python environments. Goals A lightweight mobile robotics simulat

3 Oct 22, 2021
Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control

Distributed Grid Descent: an algorithm for hyperparameter tuning guided by Bayesian inference, designed to run on multiple processes and potentially many machines with no central point of control.

Martin 1 Jan 01, 2022
sudoku solver using CSP forward-tracking algorithms.

Sudoku sudoku solver using CSP forward-tracking algorithms. Description Sudoku is a logic-based game that consists of 9 3x3 grids that create one larg

Cindy 0 Dec 27, 2021
Sign data using symmetric-key algorithm encryption.

Sign data using symmetric-key algorithm encryption. Validate signed data and identify possible validation errors. Uses sha-(1, 224, 256, 385 and 512)/hmac for signature encryption. Custom hash algori

Artur Barseghyan 39 Jun 10, 2022
This application solves sudoku puzzles using a backtracking recursive algorithm

This application solves sudoku puzzles using a backtracking recursive algorithm. The user interface is coded with Pygame to allow users to easily input puzzles.

Glenda T 0 May 17, 2022
A* (with 2 heuristic functions), BFS , DFS and DFS iterativeA* (with 2 heuristic functions), BFS , DFS and DFS iterative

Descpritpion This project solves the Taquin game (jeu de taquin) problem using different algorithms : A* (with 2 heuristic functions), BFS , DFS and D

Ayari Ahmed 3 May 09, 2022
Implementation of an ordered dithering algorithm used in computer graphics

Ordered Dithering Project In this project, we use an ordered dithering method to turn an RGB image, first to a gray scale image and then, turn the gra

1 Oct 26, 2021
Machine Learning algorithms implementation.

Machine Learning Algorithms Machine Learning algorithms implementation. What can I find here? ML Algorithms KNN K-Means-Clustering SVM (MultiClass) Pe

David Levin 1 Dec 10, 2021
Classic algorithms including Fizz Buzz, Bubble Sort, the Fibonacci Sequence, a Sudoku solver, and more.

Algorithms Classic algorithms including Fizz Buzz, Bubble Sort, the Fibonacci Sequence, a Sudoku solver, and more. Algorithm Complexity Time and Space

1 Jan 14, 2022
Zipline, a Pythonic Algorithmic Trading Library

Zipline, a Pythonic Algorithmic Trading Library

Stefan Jansen 463 Jan 08, 2023