Useful tool for inserting DataFrames into the Excel sheet.

Overview

PyCellFrame

Insert Pandas DataFrames into the Excel sheet with a bunch of conditions

Install

pip install pycellframe

Usage

Examples

Let's suppose that we have an Excel file named "numbers.xlsx" with the sheet named "Dictionary" in which we would like to insert the pandas.DataFrame.

Import pandas and create an example DataFrame (which will be inserted into the Excel sheet):

import pandas as pd


ex = {
    'Num': [1, 2, 3, 4],
    'AfterFirstBlankCol': 'AfterFirstBlank',
    'Descr': ['One', 'Two', 'Three', 'Four'],
    'AfterSecondBlankCol': 'AfterSecondBlank.',
    'Squared': [1, 4, 9, 16],
    'Binary:': ['1', '10', '11', '100']
}

df = pd.DataFrame(ex)
  • Import openpyxl.load_workbook and open numbers.xlsx - Our Excel workbook;
  • Get - Dictionary our desired sheet:
from openpyxl import load_workbook


workbook = load_workbook('numbers.xlsx')
worksheet = workbook['Dictionary']

Functions

1. incell_style(cell_src, cell_dst)
  • Let's say, we have a cell in Excel Dictionary sheet that we would like to copy the style from, and it is O3;
  • Let O4 be our destination cell:

NOTE: If we wanted to copy that style to more than one cell, we would simply use the loop depending on the locations of the destination cells.

from pycellframe import incell_style


incell_style(cell_src=worksheet['O3'], cell_dst=worksheet['O4'])
2. sheet_to_sheet(filename_sheetname_src, filename_sheetname_dst, calculated)
  • Let's say that we have two Excel files, and we need specific sheet from one file to be completely copied to another file's specific sheet;
  • filename_sheetname_src is the parameter for one file -> sheet the data to be copied from (tuple(['FILENAME_SRC', 'SHEETNAME_SRC']));
  • worksheet_dst is the parameter for the destination Worksheet the data to be copied to (openpyxl.worksheet.worksheet.Worksheet);
  • Let's assume that we have file_src.xlsx as src file and for worksheet_src we can use its CopyThisSheet sheet.
  • We can use output.xlsx -> CopyToThisSheet sheet as the destination worksheet, for which we already declared the Workbook object above.

NOTE: We are assuming that we need all the formulas (where available) from the source sheet, not calculated data, so we set calculated parameter to False

from pycellframe import sheet_to_sheet


worksheet_to = workbook['CopyToThisSheet']

sheet_to_sheet(filename_sheetname_src=('file_src.xlsx', 'CopyThisSheet'),
               worksheet_dst=worksheet_to,
               calculated=False)
3. incell_frame(worksheet, dataframe, col_range, row_range, num_str_cols, skip_cols, headers)
  • From our package pycellframe import function incell_frame;
  • Insert ex - DataFrame into our sheet twice - with and without conditions:
from pycellframe import incell_frame


# 1 - Simple insertion
incell_frame(worksheet=worksheet, dataframe=df)

# 2 - Insertion with some conditions
incell_frame(worksheet=worksheet,
             dataframe=df,
             col_range=(3, 0),
             row_range=(6, 8),
             num_str_cols=['I'],
             skip_cols=['D', 'F'],
             headers=True)

In the first insertion, we did not give our function any arguments, which means the DataFrame ex will be inserted into the Dictionary sheet in the area A1:F4 (without the headers).

However, with the second insertion we define some conditions:

  • col_range=(3, 0) - This means that insertion will be started at the Excel column with the index 3 (column C) and will not be stopped until the very end, since we gave 0 as the second element of the tuple

  • row_range=(6, 8) - Only in between these rows (in Excel) will the DataFrame data be inserted, which means that only the first row (since the headers is set to True) from ex will be inserted into the sheet

  • num_str_cols=['F'] - Another condition here is to not convert Binary column values to int. If we count, this column will be inserted in the Excel column F, so we tell the function to leave the values in it as string

  • skip_cols=['D', 'F'] - D and F columns in Excel will be skipped and since our worksheet was blank in the beginning, these columns will be blank (that is why I named the columns in the DataFrame related names)

  • headers=True - This time, the DataFrame columns will be inserted, too, so the overall insertion area would be C6:J8

For really detailed description of the parameters, please see:
  1. incell_frame.__docs__
  2. sheet_to_sheet.__docs__
  3. incell_style.__docs__
  • Finally, let's save our changes to a new Excel file:
workbook.save('output.xlsx')

Full Code

import pandas as pd
from openpyxl import load_workbook
from pycellframe import incell_style, \
                        incell_frame, \
                        sheet_to_sheet


ex = {
    'Num': [1, 2, 3, 4],
    'AfterFirstBlankCol': 'AfterFirstBlank',
    'Descr': ['One', 'Two', 'Three', 'Four'],
    'AfterSecondBlankCol': 'AfterSecondBlank.',
    'Squared': [1, 4, 9, 16],
    'Binary:': ['1', '10', '11', '100']
}

df = pd.DataFrame(ex)

workbook = load_workbook('numbers.xlsx')
worksheet = workbook['Dictionary']


# Copy the cell style
incell_style(cell_src=worksheet['O3'], cell_dst=worksheet['O4'])


# Copy the entire sheet
worksheet_to = workbook['CopyToThisSheet']

sheet_to_sheet(filename_sheetname_src=('file_src.xlsx', 'CopyThisSheet'),
               worksheet_dst=worksheet_to,
               calculated=False)


# Insert DataFrame into the sheet

## 1 - Simple insertion
incell_frame(worksheet=worksheet, dataframe=df)

## 2 - Insertion with some conditions
incell_frame(worksheet=worksheet,
             dataframe=df,
             col_range=(3, 0),
             row_range=(6, 8),
             num_str_cols=['I'],
             skip_cols=['D', 'F'],
             headers=True)

workbook.save('output.xlsx')
Owner
Luka Sosiashvili
Luka Sosiashvili
Python utility to extract differences between two pandas dataframes.

Python utility to extract differences between two pandas dataframes.

Jaime Valero 8 Jan 07, 2023
Python package for analyzing behavioral data for Brain Observatory: Visual Behavior

Allen Institute Visual Behavior Analysis package This repository contains code for analyzing behavioral data from the Allen Brain Observatory: Visual

Allen Institute 16 Nov 04, 2022
Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Binomial Option Pricing Calculator Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required) Background A derivative is a fi

sammuhrai 1 Nov 29, 2021
Analyze the Gravitational wave data stored at LIGO/VIRGO observatories

Gravitational-Wave-Analysis This project showcases how to analyze the Gravitational wave data stored at LIGO/VIRGO observatories, using Python program

1 Jan 23, 2022
Gaussian processes in TensorFlow

Website | Documentation (release) | Documentation (develop) | Glossary Table of Contents What does GPflow do? Installation Getting Started with GPflow

GPflow 1.7k Jan 06, 2023
WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

Institute for Complex Systems (ICS), Johannes Kepler University Linz 40 Dec 13, 2022
This mini project showcase how to build and debug Apache Spark application using Python

Spark app can't be debugged using normal procedure. This mini project showcase how to build and debug Apache Spark application using Python programming language. There are also options to run Spark a

Denny Imanuel 1 Dec 29, 2021
Gathering data of likes on Tinder within the past 7 days

tinder_likes_data Gathering data of Likes Sent on Tinder within the past 7 days. Versions November 25th, 2021 - Functionality to get the name and age

Alex Carter 12 Jan 05, 2023
This tool parses log data and allows to define analysis pipelines for anomaly detection.

logdata-anomaly-miner This tool parses log data and allows to define analysis pipelines for anomaly detection. It was designed to run the analysis wit

AECID 32 Nov 27, 2022
OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase working capital.

Overview OpenARB is an open source program aiming to emulate a free market while encouraging players to participate in arbitrage in order to increase

Tom 3 Feb 12, 2022
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
Performance analysis of predictive (alpha) stock factors

Alphalens Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open sour

Quantopian, Inc. 2.5k Jan 09, 2023
Synthetic Data Generation for tabular, relational and time series data.

An Open Source Project from the Data to AI Lab, at MIT Website: https://sdv.dev Documentation: https://sdv.dev/SDV User Guides Developer Guides Github

The Synthetic Data Vault Project 1.2k Jan 07, 2023
Analyzing Covid-19 Outbreaks in Ontario

My group and I took Covid-19 outbreak statistics from ontario, and analyzed them to find different patterns and future predictions for the virus

Vishwaajeeth Kamalakkannan 0 Jan 20, 2022
Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data.

PremiershipPlayerAnalysis Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data. No

5 Sep 06, 2021
Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day.

Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day. Correlate the market activity with the Apple Keynote presentations.

2 Jan 04, 2022
💬 Python scripts to parse Messenger, Hangouts, WhatsApp and Telegram chat logs into DataFrames.

Chatistics Python 3 scripts to convert chat logs from various messaging platforms into Pandas DataFrames. Can also generate histograms and word clouds

Florian 893 Jan 02, 2023
X-news - Pipeline data use scrapy, kafka, spark streaming, spark ML and elasticsearch, Kibana

X-news - Pipeline data use scrapy, kafka, spark streaming, spark ML and elasticsearch, Kibana

Nguyá»…n Quang Huy 5 Sep 28, 2022
VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

André Rodrigues 2 Feb 14, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Jan 02, 2023