Parallel t-SNE implementation with Python and Torch wrappers.

Overview

Multicore t-SNE Build Status

This is a multicore modification of Barnes-Hut t-SNE by L. Van der Maaten with python and Torch CFFI-based wrappers. This code also works faster than sklearn.TSNE on 1 core.

What to expect

Barnes-Hut t-SNE is done in two steps.

  • First step: an efficient data structure for nearest neighbours search is built and used to compute probabilities. This can be done in parallel for each point in the dataset, this is why we can expect a good speed-up by using more cores.

  • Second step: the embedding is optimized using gradient descent. This part is essentially consecutive so we can only optimize within iteration. In fact some parts can be parallelized effectively, but not all of them a parallelized for now. That is why second step speed-up will not be that significant as first step sepeed-up but there is still room for improvement.

So when can you benefit from parallelization? It is almost true, that the second step computation time is constant of D and depends mostly on N. The first part's time depends on D a lot, so for small D time(Step 1) << time(Step 2), for large D time(Step 1) >> time(Step 2). As we are only good at parallelizing step 1 we will benefit most when D is large enough (MNIST's D = 784 is large, D = 10 even for N=1000000 is not so much). I wrote multicore modification originally for Springleaf competition, where my data table was about 300000 x 3000 and only several days left till the end of the competition so any speed-up was handy.

Benchmark

1 core

Interestingly, that this code beats other implementations. We compare to sklearn (Barnes-Hut of course), L. Van der Maaten's bhtsne, py_bh_tsne repo (cython wrapper for bhtsne with QuadTree). perplexity = 30, theta=0.5 for every run. In fact py_bh_tsne repo works at the same speed as this code when using more optimization flags for compiler.

This is a benchmark for 70000x784 MNIST data:

Method Step 1 (sec) Step 2 (sec)
MulticoreTSNE(n_jobs=1) 912 350
bhtsne 4257 1233
py_bh_tsne 1232 367
sklearn(0.18) ~5400 ~20920

I did my best to find what is wrong with sklearn numbers, but it is the best benchmark I could do (you can find test script in python/tests folder).

Multicore

This table shows a relative to 1 core speed-up when using n cores.

n_jobs Step 1 Step 2
1 1x 1x
2 1.54x 1.05x
4 2.6x 1.2x
8 5.6x 1.65x

How to use

Python and torch wrappers are available.

Python

Install

Directly from pypi

pip install MulticoreTSNE

From source

Make sure cmake is installed on your system, and you will also need a sensible C++ compiler, such as gcc or llvm-clang. On macOS, you can get both via homebrew.

To install the package, please do:

git clone https://github.com/DmitryUlyanov/Multicore-TSNE.git
cd Multicore-TSNE/
pip install .

Tested with both Python 2.7 and 3.6 (conda) and Ubuntu 14.04.

Run

You can use it as a near drop-in replacement for sklearn.manifold.TSNE.

from MulticoreTSNE import MulticoreTSNE as TSNE

tsne = TSNE(n_jobs=4)
Y = tsne.fit_transform(X)

Please refer to sklearn TSNE manual for parameters explanation.

This implementation n_components=2, which is the most common case (use Barnes-Hut t-SNE or sklearn otherwise). Also note that some parameters are there just for the sake of compatibility with sklearn and are otherwise ignored. See MulticoreTSNE class docstring for more info.

MNIST example

from sklearn.datasets import load_digits
from MulticoreTSNE import MulticoreTSNE as TSNE
from matplotlib import pyplot as plt

digits = load_digits()
embeddings = TSNE(n_jobs=4).fit_transform(digits.data)
vis_x = embeddings[:, 0]
vis_y = embeddings[:, 1]
plt.scatter(vis_x, vis_y, c=digits.target, cmap=plt.cm.get_cmap("jet", 10), marker='.')
plt.colorbar(ticks=range(10))
plt.clim(-0.5, 9.5)
plt.show()

Test

You can test it on MNIST dataset with the following command:

python MulticoreTSNE/examples/test.py <n_jobs>

Note on jupyter use

To make the computation log visible in jupyter please install wurlitzer (pip install wurlitzer) and execute this line in any cell beforehand:

%load_ext wurlitzer

Memory leakages are possible if you interrupt the process. Should be OK if you let it run until the end.

Torch

To install execute the following command from repository folder:

luarocks make torch/tsne-1.0-0.rockspec

or

luarocks install https://raw.githubusercontent.com/DmitryUlyanov/Multicore-TSNE/master/torch/tsne-1.0-0.rockspec

You can run t-SNE like that:

tsne = require 'tsne'

Y = tsne(X, n_components, perplexity, n_iter, angle, n_jobs)

torch.DoubleTensor type only supported for now.

License

Inherited from original repo's license.

Future work

  • Allow other types than double
  • Improve step 2 performance (possible)

Citation

Please cite this repository if it was useful for your research:

@misc{Ulyanov2016,
  author = {Ulyanov, Dmitry},
  title = {Multicore-TSNE},
  year = {2016},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/DmitryUlyanov/Multicore-TSNE}},
}

Of course, do not forget to cite L. Van der Maaten's paper

Owner
Dmitry Ulyanov
Co-Founder at in3D, Phd @ Skoltech
Dmitry Ulyanov
A filler visualizer built using python

filler-visualizer 42 filler のログをビジュアライズしてスポーツさながら楽しむことができます! Usage (標準入力でvisualizer.pyに渡せばALL OK) 1. 既にあるログをビジュアライズする $ ./filler_vm -t 3 -p1 john_fill

Takumi Hara 1 Nov 04, 2021
Extract data from ThousandEyes REST API and visualize it on your customized Grafana Dashboard.

ThousandEyes Grafana Dashboard Extract data from the ThousandEyes REST API and visualize it on your customized Grafana Dashboard. Deploy Grafana, Infl

Flo Pachinger 16 Nov 26, 2022
Bokeh Plotting Backend for Pandas and GeoPandas

Pandas-Bokeh provides a Bokeh plotting backend for Pandas, GeoPandas and Pyspark DataFrames, similar to the already existing Visualization feature of

Patrik Hlobil 822 Jan 07, 2023
Python script for writing text on github contribution chart.

Github Contribution Drawer Python script for writing text on github contribution chart. Requirements Python 3.X Getting Started Create repository Put

Steven 0 May 27, 2022
These data visualizations were created for my introductory computer science course using Python

Homework 2: Matplotlib and Data Visualization Overview These data visualizations were created for my introductory computer science course using Python

Sophia Huang 12 Oct 20, 2022
Python package for the analysis and visualisation of finite-difference fields.

discretisedfield Marijan Beg1,2, Martin Lang2, Samuel Holt3, Ryan A. Pepper4, Hans Fangohr2,5,6 1 Department of Earth Science and Engineering, Imperia

ubermag 12 Dec 14, 2022
Python toolkit for defining+simulating+visualizing+analyzing attractors, dynamical systems, iterated function systems, roulette curves, and more

Attractors A small module that provides functions and classes for very efficient simulation and rendering of iterated function systems; dynamical syst

1 Aug 04, 2021
ecoglib: visualization and statistics for high density microecog signals

ecoglib: visualization and statistics for high density microecog signals This library contains high-level analysis tools for "topos" and "chronos" asp

1 Nov 17, 2021
Pglive - Pglive package adds support for thread-safe live plotting to pyqtgraph

Live pyqtgraph plot Pglive package adds support for thread-safe live plotting to

Martin Domaracký 15 Dec 10, 2022
Homework 2: Matplotlib and Data Visualization

Homework 2: Matplotlib and Data Visualization Overview These data visualizations were created for my introductory computer science course using Python

Sophia Huang 12 Oct 20, 2022
Generating interfaces(CLI, Qt GUI, Dash web app) from a Python function.

oneFace is a Python library for automatically generating multiple interfaces(CLI, GUI, WebGUI) from a callable Python object. oneFace is an easy way t

NaNg 31 Oct 21, 2022
🗾 Streamlit Component for rendering kepler.gl maps

streamlit-keplergl 🗾 Streamlit Component for rendering kepler.gl maps in a streamlit app. 🎈 Live Demo 🎈 Installation pip install streamlit-keplergl

Christoph Rieke 39 Dec 14, 2022
Generate visualizations of GitHub user and repository statistics using GitHub Actions.

GitHub Stats Visualization Generate visualizations of GitHub user and repository statistics using GitHub Actions. This project is currently a work-in-

Aditya Thakekar 1 Jan 11, 2022
NW 2022 Hackathon Project by Angelique Clara Hanzel, Aryan Sonik, Damien Fung, Ramit Brata Biswas

Spiral-Data-Visualizer NW 2022 Hackathon Project by Angelique Clara Hanzell, Aryan Sonik, Damien Fung, Ramit Brata Biswas Description This project vis

Damien Fung 2 Jan 16, 2022
Drug design and development team HackBio internship is a virtual bioinformatics program that introduces students and professional to advanced practical bioinformatics and its applications globally.

-Nyokong. Drug design and development team HackBio internship is a virtual bioinformatics program that introduces students and professional to advance

4 Aug 04, 2022
Python Data Validation for Humans™.

validators Python data validation for Humans. Python has all kinds of data validation tools, but every one of them seems to require defining a schema

Konsta Vesterinen 670 Jan 09, 2023
Example scripts for generating plots of Bohemian matrices

Bohemian Eigenvalue Plotting Examples This repository contains examples of generating plots of Bohemian eigenvalues. The examples in this repository a

Bohemian Matrices 5 Nov 12, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
A curated list of awesome Dash (plotly) resources

Awesome Dash A curated list of awesome Dash (plotly) resources Dash is a productive Python framework for building web applications. Written on top of

Luke Singham 1.7k Jan 07, 2023
BGraph is a tool designed to generate dependencies graphs from Android.bp soong files.

BGraph BGraph is a tool designed to generate dependencies graphs from Android.bp soong files. Overview BGraph (for Build-Graphs) is a project aimed at

Quarkslab 10 Dec 19, 2022