Moscow DEG 2021 elections plots

Overview

Построение графиков на основе публичных данных о ДЭГ в Москве в 2021г.

Описание

Скрипты в данном репозитории позволяют собственноручно построить графики распределения голосов избирателей по времени на основе публичных данных от системы Дистанционного Электронного Голосования Москвы для выборов в Государственную Думу 2021 года. Получаемые графики не учитывают переголосования, так как на настощий момент на основе публичных данных разделить бюллетени проголосовавшие единожды и переголосовавшие невозможно. Дополнительно можно построить распределение электронной "явки" по номеру блока регистрации избирателей, где также наблюдаются аномалии.

Для кого предназначено это руководство

Для людей которые хотели бы собственноручно проанализировать публично доступные данные о дистанционном голосовании, но не обладают достаточным техническим уровнем или желанием разбираться для полностью самостоятельного разворачивания базы данных. Соответственно инструкция написана максимально подробно, насколько это возможно. Руководство разделено на установку (выполняется однажды) и собственно построение графиков.

Установка

Система

Скрипты для построения графиков не должны зависеть от ОС, но на настоящий момент протестированы только под Linux. Установочные скрипты и инструкции рассчитаны на использование дистрибутивов Debian или Ubuntu. Для работы из под Windows или macOS (а для повышения безопасности и под Linux) рекомендуется воспользоваться виртуальной машиной с Ubuntu 20.04. Подойдёт например VirtualBox с вот этим образом. Установка VirtualBox достаточно проста, при необходимости инструкцию легко найти. Для подключения образа достаточно его распаковать, выполнить "Файл"-"Импорт конфигураций" и выбрать распакованный файл ova. После завершения импорта в настройках созданной виртуалки в разделе "Сеть" рекомендуется сменить тип подключения на NAT, при наличии достаточных ресурсов рекомендуется увеличить объём оперативной памяти до 8 ГБайт, остальные параметры можно оставить по-умолчанию. Системный пароль в виртуалке по ссылке выше - "ubuntu".

Клонирование репозитория и получение SQL-дампа

Для получения файлов из данного репозитория необходимо установить git и выполнить клонирование. Для этого необходимо открыть терминал (в Ubuntu нажать Activities, набрать term и нажать Enter) и выполнить в нем:

sudo apt update && sudo apt install -y git
git clone https://github.com/50000-Quaoar/election2021_msk

Для работы также понадобится дамп базы данных голосования, скачать который можно с сайта https://observer.mos.ru . Например данные по одномандатным округам доступны на этой странице, кнопка "Скачать sql dump". Если используете виртуальную машину - скачивайте сразу из неё. Данные по партийным спискам здесь.

Update: observer.mos.ru в последнее время тормозит и дампы могут скачаться битыми. Правильные дампы для голосований в Госдуму имеют в запакованном состоянии размер больше 3 ГБайт. Точно корректность дампа можно проверить следующим образом (займет несколько минут):

gunzip -kc observer-20210927_233000.sql.gz | sha256sum

SHA256 чексумма для распакованного дампа одномандатников: af3ca1f9002a7bc92065fd696e642fca84691dff7a3d8ee5165c009513082c66, а для партийных списков: 63f0cea15928ed31b1dceaaa74d2651fd901be17624bd2435ea925037fa3abec . В теории дампы после 19.09 меняться не должны, соответственно их чексуммы тоже.

Установка зависимостей и импорт базы данных

Для установки зависимостей выполнить в терминале:

cd election2021_msk/install
./install_ubuntu.sh

Для импорта базы данных в том же терминале исполняем:

./import_db.sh /home/ubuntu/Downloads/observer-20210921_143000.sql.gz v2021_om

, где /home/ubuntu/Downloads/observer-20210921_143000.sql.gz - путь до скачанного дампа базы данных, а v2021_om - желаемое имя базы данных. В зависимости от производительности вашего компьютера и ресурсов виртуалки импорт может занять от нескольких минут до ~2 часов. Терминал не закрываем. Если помимо одномандатников есть желание анализировать и другие голосования (партийные списки, Мосгордума), то необходимо эту операцию повторить с другим именем файла и названием базы.

Дорасшифровывание бюллетеней

В публично доступной на https://observer.mos.ru базе данных расшифровывание бюллетеней не была произведено до конца (подробности см. например в статье на Хабре на тему ДЭГ). Чтобы исправить это прискорбное недоразумение необходимо выполнить:

cd ..
./decrypt_ballots.py --dbname v2021_om

, где v2021_om - выбранное имя базы данных. В зависимости от производительности вашего компьютера и ресурсов виртуалки расшифровывание может занять вплоть до нескольких часов. После завершения расшифровки база данных готова к использованию и можно переходить к построению графиков и анализу данных. Строить графики можно и без дорасшифровывания или не дожидаясь его завершения, но тогда часть голосов не будет учтена. Если анализируете несколько баз, то надо дорасшифровывать их все.

Построение графиков

Для построения графика распределения голосов по времени достаточно вызвать в терминале:

./time_plot.py -c plot-config.json --dbname v2021_om

, где plot-config.json - JSON файл с конфигурацией желаемого графика (по-умолчанию plot-config.json), а v2021_om - название базы данных. Полный help можно получить выполнив:

./time_plot.py -h

Для построения графика явки в зависимости от номера блока регистрации избирателей:

./turnout_plot.py --dbname v2021_om

, где v2021_om - название базы данных, других параметров не требуется.

Выбор данных для построения графика распределения по времени

Параметры графиков задаются в виде текстовых JSON-файлов. Параметр minutes_in_bin задаёт число минут на каждую точку по оси X (рекомендуемые значения от 10 до 60). Параметр minutes_per_axis_tick - частоту подписей времени по X. Параметр percentage выбирает отображать ли на графике абсолютное количество голосов (false) или процент голосов в данном временном интервале каждого отдельного кандидата от всех кандидатов на графике (true). Параметр integrate позволяет отобразить сумму (true) всех голосов за кандидата к текущему моменту.

Наконец наиболее важный параметр candidates_to_plot задаёт список (в квадратных скобках) ID кандидатов, которых необходимо отобразить на графике. ID интересующего вас кандидата можно узнать запустив time_plot.py с опцией -l номер_округа. Например:

./time_plot.py -l 198

выведет список кандидатов в 198 округе, а для получения полного списка используйте опцию -l 0.

Время построения каждого графика обычно не превышает пары минут.

Примеры JSON-файлов

В репозитории представлено несколько JSON файлов для примера графиков по одномандатным округам: 198_perc.json - процентное распределение голосов по времени за всех кандидатов по 198 округу; 198_integral.json - полное количество голосов к ка времени за всех кандидатов по 198 округу; 208_abs.json - распределение голосов по времени за всех кандидатов по 208 округу; sobyanin_list.json - распределение голосов по времени за всех "административных" кандидатов по всем округам Москвы, позволяет проследить схожесть динамики набора голосов, в частности т.н. "перерыв на обед" в воскресенье днем; obed.json - распределение голосов по времени за трех административных кандидатов по разным округам и трех их основных конкурентов, позволяет проследить отличие в динамике числа голосов за административных и опозиционных кандидатов, в особенности в воскресенье (стремительное набор голосов за административных в 6:30 утра, отсутствие "обеда" у опозиционных голосов и резкое снижение административных после 14:30); party.json - распределение голосов по времени по партийным спискам, обед у ЕР присутствует;

Примеры графиков

Графики для конфигураций описанных выше, некоторые приближены для наглядности.

198_perc.json

alt text

198_integral.json

alt text

208_abs.json

alt text

sobyanin_list.json

alt text

obed.json

alt text

party.json

alt text

198_perc.json нормированный на официальные результаты

alt text

turnout_plot.py для одномандатных округов

alt text

TODO

  • Добавить построение других типов графиков.
  • Ускорить расшифрование.
  • Замечания и вопросы приветствуются :).
100 Days of Code The Complete Python Pro Bootcamp for 2022

100-Day-With-Python 100 Days of Code - The Complete Python Pro Bootcamp for 2022. In this course, I spend with python language over 100 days, and I up

Rajdip Das 8 Jun 22, 2022
A package for plotting maps in R with ggplot2

Attention! Google has recently changed its API requirements, and ggmap users are now required to register with Google. From a user’s perspective, ther

David Kahle 719 Jan 04, 2023
finds grocery stores and stuff next to route (gpx)

Route-Report Route report is a command-line utility that can be used to locate points-of-interest near your planned route (gpx). The results are based

Clemens Mosig 5 Oct 10, 2022
The visual framework is designed on the idea of module and implemented by mixin method

Visual Framework The visual framework is designed on the idea of module and implemented by mixin method. Its biggest feature is the mixins module whic

LEFTeyes 9 Sep 19, 2022
Define fortify and autoplot functions to allow ggplot2 to handle some popular R packages.

ggfortify This package offers fortify and autoplot functions to allow automatic ggplot2 to visualize statistical result of popular R packages. Check o

Sinhrks 504 Dec 23, 2022
flask extension for integration with the awesome pydantic package

Flask-Pydantic Flask extension for integration of the awesome pydantic package with Flask. Installation python3 -m pip install Flask-Pydantic Basics v

249 Jan 06, 2023
D-Analyst : High Performance Visualization Tool

D-Analyst : High Performance Visualization Tool D-Analyst is a high performance data visualization built with python and based on OpenGL. It allows to

4 Apr 14, 2022
Yata is a fast, simple and easy Data Visulaization tool, running on python dash

Yata is a fast, simple and easy Data Visulaization tool, running on python dash. The main goal of Yata is to provide a easy way for persons with little programming knowledge to visualize their data e

Cybercreek 3 Jun 28, 2021
Streaming pivot visualization via WebAssembly

Perspective is an interactive visualization component for large, real-time datasets. Originally developed for J.P. Morgan's trading business, Perspect

The Fintech Open Source Foundation (www.finos.org) 5.1k Dec 27, 2022
This is a learning tool and exploration app made using the Dash interactive Python framework developed by Plotly

Support Vector Machine (SVM) Explorer This app has been moved here. This repo is likely outdated and will not be updated. This is a learning tool and

Plotly 150 Nov 03, 2022
A deceptively simple plotting library for Streamlit

🍅 Plost A deceptively simple plotting library for Streamlit. Because you've been writing plots wrong all this time. Getting started pip install plost

Thiago Teixeira 192 Dec 29, 2022
Interactive Data Visualization in the browser, from Python

Bokeh is an interactive visualization library for modern web browsers. It provides elegant, concise construction of versatile graphics, and affords hi

Bokeh 17.1k Dec 31, 2022
Manim is an animation engine for explanatory math videos.

A community-maintained Python framework for creating mathematical animations.

12.4k Dec 30, 2022
SummVis is an interactive visualization tool for text summarization.

SummVis is an interactive visualization tool for analyzing abstractive summarization model outputs and datasets.

Robustness Gym 246 Dec 08, 2022
LinkedIn connections analyzer

LinkedIn Connections Analyzer 🔗 https://linkedin-analzyer.herokuapp.com Hey hey 👋 , welcome to my LinkedIn connections analyzer. I recently found ou

Okkar Min 5 Sep 13, 2022
Process dataframe in a easily way.

Popanda Written by Shengxuan Wang at OSU. Used for processing dataframe, especially for machine learning. The name is from "Po" in the movie Kung Fu P

ShawnWang 1 Dec 24, 2021
A little word cloud generator in Python

Linux macOS Windows PyPI word_cloud A little word cloud generator in Python. Read more about it on the blog post or the website. The code is tested ag

Andreas Mueller 9.2k Dec 30, 2022
A simple, fast, extensible python library for data validation.

Validr A simple, fast, extensible python library for data validation. Simple and readable schema 10X faster than jsonschema, 40X faster than schematic

kk 209 Sep 19, 2022
This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and much more using Kibana Dashboard with Elasticsearch.

System Stats Visualizer This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and m

Vishal Teotia 5 Feb 06, 2022
Generate a 3D Skyline in STL format and a OpenSCAD file from Gitlab contributions

Your Gitlab's contributions in a 3D Skyline gitlab-skyline is a Python command to generate a skyline figure from Gitlab contributions as Github did at

Félix Gómez 70 Dec 22, 2022