SummVis is an interactive visualization tool for text summarization.

Overview

SummVis

SummVis is an interactive visualization tool for analyzing abstractive summarization model outputs and datasets.

Figure

Installation

IMPORTANT: Please use python>=3.8 since some dependencies require that for installation.

git clone https://github.com/robustness-gym/summvis.git
cd summvis
pip install -r requirements.txt
python -m spacy download en_core_web_sm

Quickstart

Follow the steps below to start using SummVis immediately.

1. Download and extract data

Download our pre-cached dataset that contains predictions for state-of-the-art models such as PEGASUS and BART on 1000 examples taken from the CNN / Daily Mail validation set.

mkdir data
mkdir preprocessing
curl https://storage.googleapis.com/sfr-summvis-data-research/cnn_dailymail_1000.validation.anonymized.zip --output preprocessing/cnn_dailymail_1000.validation.anonymized.zip
unzip preprocessing/cnn_dailymail_1000.validation.anonymized.zip -d preprocessing/

2. Deanonymize data

Next, we'll need to add the original examples from the CNN / Daily Mail dataset to deanonymize the data (this information is omitted for copyright reasons). The preprocessing.py script can be used for this with the --deanonymize flag.

Deanonymize 10 examples (try_it mode):

python preprocessing.py \
--deanonymize \
--dataset_rg preprocessing/cnn_dailymail_1000.validation.anonymized \
--dataset cnn_dailymail \
--version 3.0.0 \
--split validation \
--processed_dataset_path data/try:cnn_dailymail_1000.validation \
--try_it

This will take between 10 seconds and several minutes depending on whether you've previously loaded CNN/DailyMail from the Datasets library.

3. Run SummVis

Finally, we're ready to run the Streamlit app. Once the app loads, make sure it's pointing to the right File at the top of the interface.

streamlit run summvis.py

General instructions for running with pre-loaded datasets

1. Download one of the pre-loaded datasets:

CNN / Daily Mail (1000 examples from validation set): https://storage.googleapis.com/sfr-summvis-data-research/cnn_dailymail_1000.validation.anonymized.zip
CNN / Daily Mail (full validation set): https://storage.googleapis.com/sfr-summvis-data-research/cnn_dailymail.validation.anonymized.zip
XSum (1000 examples from validation set): https://storage.googleapis.com/sfr-summvis-data-research/xsum_1000.validation.anonymized.zip
XSum (full validation set): https://storage.googleapis.com/sfr-summvis-data-research/xsum.validation.anonymized.zip

We recommend that you choose the smallest dataset that fits your need in order to minimize download / preprocessing time.

Example: Download and unzip CNN / Daily Mail

mkdir data
mkdir preprocessing
curl https://storage.googleapis.com/sfr-summvis-data-research/cnn_dailymail_1000.validation.anonymized.zip --output preprocessing/cnn_dailymail_1000.validation.anonymized.zip
unzip preprocessing/cnn_dailymail_1000.validation.anonymized.zip -d preprocessing/

2. Deanonymize n examples:

Set the --n_samples argument and name the --processed_dataset_path output file accordingly.

Example: Deanonymize 100 examples from CNN / Daily Mail:

python preprocessing.py \
--deanonymize \
--dataset_rg preprocessing/cnn_dailymail_1000.validation.anonymized \
--dataset cnn_dailymail \
--version 3.0.0 \
--split validation \
--processed_dataset_path data/100:cnn_dailymail_1000.validation \
--n_samples 100

Example: Deanonymize all pre-loaded examples from CNN / Daily Mail (1000 examples dataset):

python preprocessing.py \
--deanonymize \
--dataset_rg preprocessing/cnn_dailymail_1000.validation.anonymized \
--dataset cnn_dailymail \
--version 3.0.0 \
--split validation \
--processed_dataset_path data/full:cnn_dailymail_1000.validation \
--n_samples 1000

Example: Deanonymize all pre-loaded examples from CNN / Daily Mail (full dataset):

python preprocessing.py \
--deanonymize \
--dataset_rg preprocessing/cnn_dailymail.validation.anonymized \
--dataset cnn_dailymail \
--version 3.0.0 \
--split validation \
--processed_dataset_path data/full:cnn_dailymail.validation

Example: Deanonymize all pre-loaded examples from XSum (1000 examples dataset):

python preprocessing.py \
--deanonymize \
--dataset_rg preprocessing/xsum_1000.validation.anonymized \
--dataset xsum \
--split validation \
--processed_dataset_path data/full:xsum_1000.validation \
--n_samples 1000

3. Run SummVis

Once the app loads, make sure it's pointing to the right File at the top of the interface.

streamlit run summvis.py

Alternately, if you need to point SummVis to a folder where your data is stored.

streamlit run summvis.py -- --path your/path/to/data

Note that the additional -- is not a mistake, and is required to pass command-line arguments in streamlit.

Get your data into SummVis: end-to-end preprocessing

You can also perform preprocessing end-to-end to load any summarization dataset or model predictions into SummVis. Instructions for this are provided below.

Prior to running the following, an additional install step is required:

python -m spacy download en_core_web_lg

1. Standardize and save dataset to disk.

Loads in a dataset from HF, or any dataset that you have and stores it in a standardized format with columns for document and summary:reference.

Example: Save CNN / Daily Mail validation split to disk as a jsonl file.

python preprocessing.py \
--standardize \
--dataset cnn_dailymail \
--version 3.0.0 \
--split validation \
--save_jsonl_path preprocessing/cnn_dailymail.validation.jsonl

Example: Load custom my_dataset.jsonl, standardize, and save.

python preprocessing.py \
--standardize \
--dataset_jsonl path/to/my_dataset.jsonl \
--doc_column name_of_document_column \
--reference_column name_of_reference_summary_column \
--save_jsonl_path preprocessing/my_dataset.jsonl

2. Add predictions to the saved dataset.

Takes a saved dataset that has already been standardized and adds predictions to it from prediction jsonl files. Cached predictions for several models available here: https://storage.googleapis.com/sfr-summvis-data-research/predictions.zip

You may also generate your own predictions using this this script.

Example: Add 6 prediction files for PEGASUS and BART to the dataset.

python preprocessing.py \
--join_predictions \
--dataset_jsonl preprocessing/cnn_dailymail.validation.jsonl \
--prediction_jsonls \
predictions/bart-cnndm.cnndm.validation.results.anonymized \
predictions/bart-xsum.cnndm.validation.results.anonymized \
predictions/pegasus-cnndm.cnndm.validation.results.anonymized \
predictions/pegasus-multinews.cnndm.validation.results.anonymized \
predictions/pegasus-newsroom.cnndm.validation.results.anonymized \
predictions/pegasus-xsum.cnndm.validation.results.anonymized \
--save_jsonl_path preprocessing/cnn_dailymail.validation.jsonl

3. Run the preprocessing workflow and save the dataset.

Takes a saved dataset that has been standardized, and predictions already added. Applies all the preprocessing steps to it (running spaCy, lexical and semantic aligners), and stores the processed dataset back to disk.

Example: Autorun with default settings on a few examples to try it.

python preprocessing.py \
--workflow \
--dataset_jsonl preprocessing/cnn_dailymail.validation.jsonl \
--processed_dataset_path data/cnn_dailymail.validation \
--try_it

Example: Autorun with default settings on all examples.

python preprocessing.py \
--workflow \
--dataset_jsonl preprocessing/cnn_dailymail.validation.jsonl \
--processed_dataset_path data/cnn_dailymail

Citation

When referencing this repository, please cite this paper:

@misc{vig2021summvis,
      title={SummVis: Interactive Visual Analysis of Models, Data, and Evaluation for Text Summarization}, 
      author={Jesse Vig and Wojciech Kryscinski and Karan Goel and Nazneen Fatema Rajani},
      year={2021},
      eprint={2104.07605},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2104.07605}
}

Acknowledgements

We thank Michael Correll for his valuable feedback.

Owner
Robustness Gym
Building tools for evaluating and repairing ML models.
Robustness Gym
Calendar heatmaps from Pandas time series data

Note: See MarvinT/calmap for the maintained version of the project. That is also the version that gets published to PyPI and it has received several f

Martijn Vermaat 195 Dec 22, 2022
A streamlit component for bi-directional communication with bokeh plots.

Streamlit Bokeh Events A streamlit component for bi-directional communication with bokeh plots. Its just a workaround till streamlit team releases sup

Ashish Shukla 123 Dec 25, 2022
Simple Inkscape Scripting

Simple Inkscape Scripting Description In the Inkscape vector-drawing program, how would you go about drawing 100 diamonds, each with a random color an

Scott Pakin 140 Dec 27, 2022
Lime: Explaining the predictions of any machine learning classifier

lime This project is about explaining what machine learning classifiers (or models) are doing. At the moment, we support explaining individual predict

Marco Tulio Correia Ribeiro 10.3k Dec 29, 2022
Realtime Web Apps and Dashboards for Python and R

H2O Wave Realtime Web Apps and Dashboards for Python and R New! R Language API Build and control Wave dashboards using R! New! Easily integrate AI/ML

H2O.ai 3.4k Jan 06, 2023
🎨 Python3 binding for `@AntV/G2Plot` Plotting Library .

PyG2Plot 🎨 Python3 binding for @AntV/G2Plot which an interactive and responsive charting library. Based on the grammar of graphics, you can easily ma

hustcc 990 Jan 05, 2023
A python package for animating plots build on matplotlib.

animatplot A python package for making interactive as well as animated plots with matplotlib. Requires Python = 3.5 Matplotlib = 2.2 (because slider

Tyler Makaro 394 Dec 18, 2022
High performance, editable, stylable datagrids in jupyter and jupyterlab

An ipywidgets wrapper of regular-table for Jupyter. Examples Two Billion Rows Notebook Click Events Notebook Edit Events Notebook Styling Notebook Pan

J.P. Morgan Chase 75 Dec 15, 2022
An easy to use burndown chart generator for GitHub Project Boards.

Burndown Chart for GitHub Projects An easy to use burndown chart generator for GitHub Project Boards. Table of Contents Features Installation Assumpti

Joseph Hale 15 Dec 28, 2022
CPG represent!

CoolPandasGroup CPG represent! Arianna Brandon Enne Luan Tracie Project requirements: use Pandas to clean and format datasets use Jupyter Notebook to

Enne 3 Feb 07, 2022
Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

Michael Waskom 10.2k Dec 30, 2022
Interactive Data Visualization in the browser, from Python

Bokeh is an interactive visualization library for modern web browsers. It provides elegant, concise construction of versatile graphics, and affords hi

Bokeh 17.1k Dec 31, 2022
YOPO is an interactive dashboard which generates various standard plots.

YOPO is an interactive dashboard which generates various standard plots.you can create various graphs and charts with a click of a button. This tool uses Dash and Flask in backend.

ADARSH C 38 Dec 20, 2022
These data visualizations were created for my introductory computer science course using Python

Homework 2: Matplotlib and Data Visualization Overview These data visualizations were created for my introductory computer science course using Python

Sophia Huang 12 Oct 20, 2022
A little logger for machine learning research

Blinker Blinker provides a fast dispatching system that allows any number of interested parties to subscribe to events, or "signals". Signal receivers

Reinforcement Learning Working Group 27 Dec 03, 2022
Tools for calculating and visualizing Elo-like ratings of MLB teams using Retosheet data

Overview This project uses historical baseball games data to calculate an Elo-like rating for MLB teams based on regular season match ups. The Elo rat

Lukas Owens 0 Aug 25, 2021
Visualize your pandas data with one-line code

PandasEcharts 简介 基于pandas和pyecharts的可视化工具 安装 pip 安装 $ pip install pandasecharts 源码安装 $ git clone https://github.com/gamersover/pandasecharts $ cd pand

陈华杰 2 Apr 13, 2022
Typical: Fast, simple, & correct data-validation using Python 3 typing.

typical: Python's Typing Toolkit Introduction Typical is a library devoted to runtime analysis, inference, validation, and enforcement of Python types

Sean 171 Jan 02, 2023
3D rendered visualization of the austrian monuments registry

Visualization of the Austrian Monuments Visualization of the monument landscape of the austrian monuments registry (Bundesdenkmalamt Denkmalverzeichni

Nikolai Janakiev 3 Oct 24, 2019
Displaying plot of death rates from past years in Poland. Data source from these years is in readme

Average-Death-Rate Displaying plot of death rates from past years in Poland The goal collect the data from a CSV file count the ADR (Average Death Rat

Oliwier Szymański 0 Sep 12, 2021