Python Package for CanvasXpress JS Visualization Tools

Overview

CanvasXpress Python Library

About CanvasXpress for Python

CanvasXpress was developed as the core visualization component for bioinformatics and systems biology analysis at Bristol-Myers Squibb. It supports a large number of visualizations to display scientific and non-scientific data. CanvasXpress also includes a simple and unobtrusive user interface to explore complex data sets, a sophisticated and unique mechanism to keep track of all user customization for Reproducible Research purposes, as well as an 'out of the box' broadcasting capability to synchronize selected data points across all CanvasXpress plots in a page. Data can be easily sorted, grouped, transposed, transformed or clustered dynamically. The fully customizable mouse events as well as the zooming, panning and drag-and-drop capabilities are features that make this library unique in its class.

CanvasXpress can be now be used within Python for native integration into IPython and Web environments, such as:

Complete examples using the CanvasXpress library including the mouse events, zooming, and broadcasting capabilities are included in this package. This CanvasXpress Python package was created by Dr. Todd C. Brett, with support from Aggregate Genius Inc., in cooperation with the CanvasXpress team.

The maintainer of the Python edition of this package is Dr. Todd C. Brett.

Project Status

Topic Status
Version and Platform Release Compatibility Implementations
Popularity PyPI - Downloads
Status docinfosci Documentation Status Coverage Status Requirements Status Activity

Enhancements

A complete list of enhancements by release date is available at the CanvasXpress for Python Status Page.

Roadmap

This package is actively maintained and developed. Our focus for 2021 is:

Immediate Focus

  • Plotly Dash integration
  • Detailed documentation and working examples of all Python functionality

General Focus

  • Embedded CanvasXpress for JS libraries (etc.) for offline work
  • Integraton with dashboard frameworks for easier applet creation
  • Continued alignment with the CanvasXpress Javascript library
  • Continued stability and security, if/as needed

Getting Started

Documentation

The documentation site contains complete examples and API documentation. There is also a wealth of additional information, including full Javascript API documentation, at https://www.canvasxpress.org.

New: Jupyter Notebook based examples for hundreds of chart configurations!

A Quick Script/Console Example

Charts can be defined in scripts or a console session and then displayed using the default browser, assuming that a graphical browser with Javascript support is available on the host system.

from canvasxpress.canvas import CanvasXpress
from canvasxpress.render.popup import CXBrowserPopup

if __name__ == "__main__":
    # Define a CX bar chart with some basic data
    chart: CanvasXpress = CanvasXpress(
        data={
            "y": {
                "vars": ["Gene1"],
                "smps": ["Smp1", "Smp2", "Smp3"],
                "data": [[10, 35, 88]]
            }
        },
        config={
            "graphType" : "Bar"
        }
    )
    
    # Display the chart in its own Web page
    browser = CXBrowserPopup(chart)
    browser.render()

Upon running the example the following chart will be displayed on systems such as MacOS X, Windows, and Linux with graphical systems:

A Quick Flask Example

Flask is a popular lean Web development framework for Python based applications. Flask applications can serve Web pages, RESTful APIs, and similar backend service concepts. This example shows how to create a basic Flask application that provides a basic Web page with a CanvasXpress chart composed using Python in the backend.

The concepts in this example equally apply to other frameworks that can serve Web pages, such as Django and Tornado.

Create a Basic Flask App

A basic Flask app provides a means by which:

  1. A local development server can be started
  2. A function can respond to a URL

First install Flask and CanvasXpress for Python:

pip install -U Flask canvasxpress

Then create a demo file, such as app.py, and insert:

# save this as app.py
from flask import Flask

app = Flask(__name__)

@app.route('/')
def canvasxpress_example():
    return "Hello!"

On the command line, execute:

flask run

And output similar to the following will be provided:

Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Browsing to http://127.0.0.1:5000/ will result in a page with the text Hello!.

Add a Chart

CanvasXpress for Python can be used to define a chart with various attributes and then generate the necessary HTML and Javascript for proper display in the browser.

Add a templates directory to the same location as the app.py file, and inside add a file called canvasxpress_example.html. Inside the file add:

<html>
    <head>
        <meta charset="UTF-8">
        <title>Flask CanvasXpress Example</title>
        
        <!-- 2. Include the CanvasXpress library -->
        <link 
                href='https://www.canvasxpress.org/dist/canvasXpress.css' 
                rel='stylesheet' 
                type='text/css'
        />
        <script 
                src='https://www.canvasxpress.org/dist/canvasXpress.min.js' 
                type='text/javascript'>
        </script>
        
        <!-- 3. Include script to initialize object -->
        <script type="text/javascript">
            onReady(function () {
                {{canvas_source|safe}}
            })
        </script>
        
    </head>
    <body>
    
        <!-- 1. DOM element where the visualization will be displayed -->
        {{canvas_element|safe}}
    
    </body>
</html>

The HTML file, which uses Jinja syntax achieves three things:

  1. Provides a location for a <div> element that marks where the chart will be placed.
  2. References the CanvasXpress CSS and JS files needed to illustrate and operate the charts.
  3. Provides a location for the Javascript that will replace the chart <div> with a working element on page load.

Going back to our Flask app, we can add a basic chart definition with some data to our example function:

from flask import Flask, render_template
from canvasxpress.canvas import CanvasXpress

app = Flask(__name__)

@app.route('/')
def canvasxpress_example():
    # Define a CX bar chart with some basic data
    chart: CanvasXpress = CanvasXpress(
        data={
            "y": {
                "vars": ["Gene1"],
                "smps": ["Smp1", "Smp2", "Smp3"],
                "data": [[10, 35, 88]]
            }
        },
        config={
            "graphType" : "Bar"
        }
    )

    # Get the HTML parts for use in our Web page:
    html_parts: dict = chart.render_to_html_parts()

    # Return a Web page based on canvasxpress_example.html and our HTML parts
    return render_template(
        "canvasxpress_example.html",
        canvas_element=html_parts["cx_canvas"],
        canvas_source=html_parts["cx_js"]
    )

Rerun the flask app on the command line and browse to the indicated IP and URL. A page similar to the following will be displayed:

Congratulations! You have created your first Python-driven CanvasXpress app!

Owner
Dr. Todd C. Brett
COO & Information Scientist at Aggregate Genius, Inc.
Dr. Todd C. Brett
Visualize the training curve from the *.csv file (tensorboard format).

Training-Curve-Vis Visualize the training curve from the *.csv file (tensorboard format). Feature Custom labels Curve smoothing Support for multiple c

Luckky 7 Feb 23, 2022
PyPassword is a simple follow up to PyPassphrase

PyPassword PyPassword is a simple follow up to PyPassphrase. After finishing that project it occured to me that while some may wish to use that option

Scotty 2 Jan 22, 2022
Fast data visualization and GUI tools for scientific / engineering applications

PyQtGraph A pure-Python graphics library for PyQt5/PyQt6/PySide2/PySide6 Copyright 2020 Luke Campagnola, University of North Carolina at Chapel Hill h

pyqtgraph 3.1k Jan 08, 2023
An open-source plotting library for statistical data.

Lets-Plot Lets-Plot is an open-source plotting library for statistical data. It is implemented using the Kotlin programming language. The design of Le

JetBrains 820 Jan 06, 2023
Python package for the analysis and visualisation of finite-difference fields.

discretisedfield Marijan Beg1,2, Martin Lang2, Samuel Holt3, Ryan A. Pepper4, Hans Fangohr2,5,6 1 Department of Earth Science and Engineering, Imperia

ubermag 12 Dec 14, 2022
A python script and steps to display locations of peers connected to qbittorrent

A python script (along with instructions) to display the locations of all the peers your qBittorrent client is connected to in a Grafana worldmap dash

62 Dec 07, 2022
Color maps for POV-Ray v3.7 from the Plasma, Inferno, Magma and Viridis color maps in Python's Matplotlib

POV-Ray-color-maps Color maps for POV-Ray v3.7 from the Plasma, Inferno, Magma and Viridis color maps in Python's Matplotlib. The include file Color_M

Tor Olav Kristensen 1 Apr 05, 2022
Pebble is a stat's visualization tool, this will provide a skeleton to develop a monitoring tool.

Pebble is a stat's visualization tool, this will provide a skeleton to develop a monitoring tool.

Aravind Kumar G 2 Nov 17, 2021
A Python Library for Self Organizing Map (SOM)

SOMPY A Python Library for Self Organizing Map (SOM) As much as possible, the structure of SOM is similar to somtoolbox in Matlab. It has the followin

Vahid Moosavi 497 Dec 29, 2022
又一个云探针

ServerStatus-Murasame 感谢ServerStatus-Hotaru,又一个云探针诞生了(大雾 本项目在ServerStatus-Hotaru的基础上使用fastapi重构了服务端,部分修改了客户端与前端 项目还在非常原始的阶段,可能存在严重的问题 演示站:https://stat

6 Oct 19, 2021
Displaying plot of death rates from past years in Poland. Data source from these years is in readme

Average-Death-Rate Displaying plot of death rates from past years in Poland The goal collect the data from a CSV file count the ADR (Average Death Rat

Oliwier Szymański 0 Sep 12, 2021
trade bot connected to binance API/ websocket.,, include dashboard in plotly dash to visualize trades and balances

Crypto trade bot 1. What it is Trading bot connected to Binance API. This project made for fun. So ... Do not use to trade live before you have backte

G 3 Oct 07, 2022
Cryptocurrency Centralized Exchange Visualization

This is a simple one that uses Grafina to visualize cryptocurrency from the Bitkub exchange. This service will make a request to the Bitkub API from your wallet and save the response to Postgresql. G

Popboon Mahachanawong 1 Nov 24, 2021
This is simply repo for line drawing rendering using freestyle in Blender.

blender_freestyle_line_drawing This is simply repo for line drawing rendering using freestyle in Blender. how to use blender2935 --background --python

MaxLin 3 Jul 02, 2022
Flow-based visual scripting for Python

A simple visual node editor for Python Ryven combines flow-based visual scripting with Python. It gives you absolute freedom for your nodes and a simp

Leon Thomm 3.1k Jan 06, 2023
Bar Chart of the number of Senators from each party who are up for election in the next three General Elections

Congress-Analysis Bar Chart of the number of Senators from each party who are up for election in the next three General Elections This bar chart shows

11 Oct 26, 2021
Customizing Visual Styles in Plotly

Customizing Visual Styles in Plotly Code for a workshop originally developed for an Unconference session during the Outlier Conference hosted by Data

Data Design Dimension 9 Aug 03, 2022
Param: Make your Python code clearer and more reliable by declaring Parameters

Param Param is a library providing Parameters: Python attributes extended to have features such as type and range checking, dynamically generated valu

HoloViz 304 Jan 07, 2023
Learn Basic to advanced level Data visualisation techniques from this Repository

Data visualisation Hey, You can learn Basic to advanced level Data visualisation techniques from this Repository. Data visualization is the graphic re

Shashank dwivedi 16 Jan 03, 2023
The Metabolomics Integrator (MINT) is a post-processing tool for liquid chromatography-mass spectrometry (LCMS) based metabolomics.

MINT (Metabolomics Integrator) The Metabolomics Integrator (MINT) is a post-processing tool for liquid chromatography-mass spectrometry (LCMS) based m

Sören Wacker 0 May 04, 2022