Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Overview

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021.

Introduction

We proposed a novel model training paradigm for few-shot semantic segmentation. Instead of meta-learning the whole, complex segmentation model, we focus on the simplest classifier part to make new-class adaptation more tractable. Also, a novel meta-learning algorithm that leverages a Classifier Weight Transformer (CWT) for adapting dynamically the classifier weights to every query sample is introduced to eliminate the impact of intra-class discripency.

Architecture

Environment

Other configurations can also work, but the results may be slightly different.

  • torch==1.6.0
  • numpy==1.19.1
  • cv2==4.4.0
  • pyyaml==5.3.1

Dataset

We follow the same rule to download and process dataset as that in https://github.com/Jia-Research-Lab/PFENet. After processing, please change the "data_root" and "train/val_list" in config files accordingly.

Pre-trained models in the first stage

For convenience, we provide the pre-trained models on base classes for each split. Download it here: https://drive.google.com/file/d/1yHUNI1iTwF5U_HqCQ4kF6ti8lepcrBBY/view?usp=sharing, and change "resume_weights" to this folder.

Episodic training and inference

  • The general training script
sh scripts/train.sh {data} {split} {[gpu_ids]} {layers} {shots}
  • This is an example with 1-shot, ResNet-50, split-0 on PASCAL and GPU device [0].
sh scripts/train.sh pascal 0 [0] 50 1
  • Inference script
sh scripts/test.sh {data} {shot} {[gpu_ids]} {layers} {split}

Contact

Please write down issues or contact me via zhihe.lu [at] surrey.ac.uk if you have any questions.

Citation

If you feel helpful of this work, please cite it. Will update this when it is officially published on ICCV.

@misc{lu2021simpler,
      title={Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer}, 
      author={Zhihe lu and Sen He and Xiatian Zhu and Li Zhang and Yi-Zhe Song and Tao Xiang},
      year={2021},
      eprint={2108.03032},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgments

Thanks to the code contributors. Some parts of code are borrowed from https://github.com/Jia-Research-Lab/PFENet and https://github.com/mboudiaf/RePRI-for-Few-Shot-Segmentation.

Owner
Lucas
A PhD student on Computer Vision.
Lucas
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Bridging the Visual Gap: Wide-Range Image Blending PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".

Chia-Ni Lu 69 Dec 20, 2022
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022