Small U-Net for vehicle detection

Overview

Small U-Net for vehicle detection

Vivek Yadav, PhD

Overview

In this repository , we will go over using U-net for detecting vehicles in a video stream of images provided by Udacity. U-net is a encoder-decoder type of network for pixel-wise predictions. U-net is unique because in U-net, the receptive fields after convolution are concatenated with the receptive fields in up-convolving process. This additional feature allows network to use original features in addition to features after up-convolution. This results in overall better performance than a network that has access to only features after up-convolution. Post-training, the network was correctly able to identify vehicles in an urban setting, and more interestingly performed better than humans in cases where cars were not correctly annotated.

We will go over data processing steps, augmentation technique and training details to explain how we trained U-net to detect vehicles in Urban Setting. This solution was inspired by the original research paper on U-net and the prize winning submission to kaggle’s ultrasound segmentation challenge. All the training was done on my Titan X computer.

The Data

We used annotated vehicle data set provided by Udacity. The 4.5 GB data set was composed of frames collected from two of videos while driving the Udacity car around Mountain View area in heavy traffic. The data set contained a label file with bounding boxes marking other cars, trucks and pedestrians. The entire data set was comprised of about 22000 images. We combined cars and trucks into one class vehicle, and dropped all the bounding boxes for pedestrians. Mainly because the number of cars far exceeded the number of trucks and pedestrians in the data set.

To run the codes in this notebook, download all the Udacity's 4.5 GB data set and place them in the same folders as all the files.

IMPORTANT: The xmin, xmax, ymin and ymax values were marked incorrectly in the Udacity data, so I corrected them. This correction can be found in the code block where data frames are defined. Further, as data from two sources are combined, the column names were modified to match.

Data preparation and augmentation

We first divided the data into training and testing data sets. As the frames were obtained from a video feed, each frame was dependent upon the previous frames, we therefore last 2000 images for testing, and remaining images for training. We then performed augmentation on training data set. We performed only 3 augmentation in this project. These were stretching, translation and brightness augmentation. We specifically chose these three transformations to preserve the rectangular shape of the bounding boxes. Another interesting augmentation we considered was to flip the images about the vertical axis randomly, however we decided against it. For those interested, flipping data in Left side drive system (like US) is an easy way to transform data to traffic patterns expected in India or other countries that follow right side drive system.

Stretching:

Figure below shows how stretching augmentation works. We first define 4 points near corners of the original image (shown in purple). We then stretch these points so these points become the new boundary points. We modify the bounding boxes accordingly. We did not discard the bounding boxes outside the image, reason for this will be clear in coming images.

Translation:

We next apply translation transformation, to generate the effect of cars being at different locations.

Brightness augmentation

In addition to the stretching and translation augmentation, brightness augmentation was applied to account for different lighting conditions.

Target set preparation:

In typical pixel-wise prediction, we draw polygons around the object of interest to draw masks. In this case, we did not have that information, we therefore used the region within the bounding boxes as masks for defining objects. We then used these masks to generate a mask of the same size, which when applied to the original images gives us vehicles back. This is also illustrated in the figure below. The images on the left panel are obtained using augmentation on an naive image, the center panel presents the vehicle mask we intend to predict and the final panel shows the result of applying the mask back on the original image to confirm that the mask in fact identifies vehicles. The goal of our neural network model is to predict the mask in the center, given the image on the left.

Model:

The model we chose is is a scaled down version of a deep learning architecture called U-net. U-net is a encoder-decoder type network architecture for image segmentation. The name of the architecture comes from its unique shape, where the feature maps from convolution part in downsampling step are fed to the up-convolution part in up-sampling step. U-net has been used extensively for biomedical applications to detect cancer, kidney pathologies and tracking cells etc. U-net has proven to be very powerful segmentation tool in scenarios with limited data (less than 50 training samples in some cases). Another advantage of using a U-net is that it does not have any fully connected layers, therefore has no restriction on the size of the input image. This feature allows us to extract features from images of different sizes, which is an attractive attribute for applying deep learning to high fidelity biomedical imaging data. The ability of U-net to work with very little data and no specific requirement on input image size make it a strong candidate for image segmentation tasks. Another reason to choose the U-net architecture is the letter U. As the data set was provided by Udacity and as am currently enrolled in Udacity’s self-driving car, choice of U-net was a fitting tribute to Udacity.

U-net, taken from http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a/ (better illustration of U-net coming soon) The input to U-net is a resized 960X640 3-channel RGB image and output is 960X640 1-channel mask of predictions. We wanted the predictions to reflect probability of a pixel being a vehicle or not, so we used an activation function of sigmoid on the last layer.

Training:

As with any segmentation deep learning neural network, training took long time. We were unable to fit data set with batch size more than 1 on a titan X gpu with the full U-net, we therefore decided to choose a batch size of 1 for all architectures. This 1 image was randomly samples and augmented from all training images. As we chose a batch size of 1, we chose adam optimizer with a learning rate of 0.0001. Setting up the training itself was straight forward, but training the segmentation model made my Titan X gpu cringe. To perform 10000 iterations, my titan X machine took about 20 minutes.

Objective:

We defined a custom objective function in keras to compute approximate Intersection over Union (IoU) between the network output and target mask. IoU is a popular metric of choice for tasks involving bounding boxes. The objective was to maximize IoU, as IoU always varies between 0 and 1, we simply chose to minimize the negative of IoU.

Intersection over Union (IoU) metric for bounding boxes

Instead of implementing a direct computation for intersection over union or cross entropy, we used a much simpler metric for area where we multiply two times the network’s output with the target mask, and divide it by the sum of all values in the predicted output and the true mask. This trick helped us avoid computationally involved area calculations, which resulted in lower training times.

Results:

We stopped the training after 2 hours, and decided to use the network to make predictions. In test time, no augmentation was applied for prediction. The algorithm was surprisingly fast. It took 200ms to make 10 predictions (average of 20ms per image), this included reading file off of disk, and drawing the blobs.

Figures below present performance of the model for vehicle detection. It was surprising that the neural network was able to identify cars correctly in the driving frames it did not see before. Figures below present result of segmentation algorithm applied for vehicle predictions. The panels are organized as original image, predicted mask and ground truth boxes.

Better than Human performance

Below are a few examples where the intersection over union value was low. However, on further investigation we found that in these cases the car was not marked in the data set and the segmentation model correctly placed a mask on the car location. This strongly suggests that our model learned to identify cars and is not simply replicating the training data.

There were a few bad examples too where the car wrongly identified area that are not cars as cars. However, such examples were few in the test data set.

Finally to test how well the model generalizes to unseen data, we ran the U-net algorithm on one of the images from highway driving data provided for the project video. Figure below shows that the model correctly identified the cars, both in its lane and in the opposite lane. What is even more surprising is that the model identified cars that were occluded by the railings on the side. I didnt notice the car until I saw red marks from U-net segmentation myself. The algorithm did identify some additional region as possible car location, but given the fact that it didnt miss any car, we consider this algorithm a successful detection algorithm.

Applying on video

In a final step, we applied U-net on project video. To remove false positives, we averaged outputs of the Unet from 10 previous frames, and thresholded them at 240 pixel intensity, further all bounding boxes with widths or heights below 40 pixels were removed. This method resulted in removal of false positives, but increased the response time of the network. The videos below present performance on project and challenge videos.

Project videos

Algorithm performance on Project Video

Algorithm performance on Project Video

Challenge videos

Algorithm performance on Project Video

Algorithm performance on Project Video

Reflections:

This was a very interesting project for many reasons. This was first time I implemented segmentation model on a relatively wild data set. It was the the first time I saw my Titan X computer struggle to run through convnets. Overall, I was extremely happy with the results, and surprised by how well the U-net architecture learned to detect cars. In some cases, it performed better than humans marking the original data set. I was especially surprised when it correctly identified car in the opposite late that I had missed until I saw the red blob over railings. In this case, the network worked better than me, and am proud of it :D One important thing to note is that the model performed well and identified cars in the data set that were not marked as cars too. This suggests that the model’s performance can be further improved if we chose a data set with fewer errors. Next I will incorporate data from KITTI and other sources and test if the model performance improves. Next steps to try are to, Try other cost functions, especially a true Intersection over Union and cross entropy loss function. Merge data from multiple sources and check how the model performs on new data. Use pretrained model for the convolution part of the U-net model, and combine ROI pooling with segmentation to get faster object detection.

Acknowledgements:

I am very thankful to Udacity for selecting me for the first cohort, this allowed me to connect with many like-minded individuals. I especially learned a lot from discussions with Henrik Tünnermann and John Chen. I am also thankful for getting the NVIDA’s GPU grant. Although, its for work, but I use it for Udacity too. :)

Additional links:

  1. Good collection of various segmentation models: https://handong1587.github.io/deep_learning/2015/10/09/segmentation.html
  2. Original prize winning submission to Kaggle https://github.com/jocicmarko/ultrasound-nerve-segmentation
### We will next go over the python implementation of U-net
### Import libraries

import cv2
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
import numpy as np
% matplotlib inline
import glob

from keras.models import Model
from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D,Lambda
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as K
from scipy.ndimage.measurements import label
import time
Using TensorFlow backend.
## Get path where files are to be stored

dir_label = ['object-dataset',
            'object-detection-crowdai']

### Make data frame in Pandas

import pandas as pd


df_files1 = pd.read_csv(dir_label[1]+'/labels.csv', header=0)
df_vehicles1 = df_files1[(df_files1['Label']=='Car') | (df_files1['Label']=='Truck')].reset_index()
df_vehicles1 = df_vehicles1.drop('index', 1)
df_vehicles1['File_Path'] =  dir_label[1] + '/' +df_vehicles1['Frame']
df_vehicles1 = df_vehicles1.drop('Preview URL', 1)
print(dir_label[1])
df_vehicles1.head()
object-detection-crowdai
xmin xmax ymin ymax Frame Label File_Path
0 785 533 905 644 1479498371963069978.jpg Car object-detection-crowdai/1479498371963069978.jpg
1 89 551 291 680 1479498371963069978.jpg Car object-detection-crowdai/1479498371963069978.jpg
2 268 546 383 650 1479498371963069978.jpg Car object-detection-crowdai/1479498371963069978.jpg
3 455 522 548 615 1479498371963069978.jpg Truck object-detection-crowdai/1479498371963069978.jpg
4 548 522 625 605 1479498371963069978.jpg Truck object-detection-crowdai/1479498371963069978.jpg

### Get data frame from second source
### Renamed columns to correct xmin,xmax,ymin, ymax values.
### REnamed frames and labels to match crowd-awi source

df_files2 = pd.read_csv('object-dataset/labels.csv', header=None)
df_files2.columns= ['Frame',  'xmin', 'xmax', 'ymin','ymax', 'ind', 'Label','RM']
df_vehicles2 = df_files2[(df_files2['Label']=='car') | (df_files2['Label']=='truck')].reset_index()
df_vehicles2 = df_vehicles2.drop('index', 1)
df_vehicles2 = df_vehicles2.drop('RM', 1)
df_vehicles2 = df_vehicles2.drop('ind', 1)

df_vehicles2['File_Path'] = dir_label[0] + '/' +df_vehicles2['Frame']

df_vehicles2.head()
Frame xmin xmax ymin ymax Label File_Path
0 1478019952686311006.jpg 950 574 1004 620 car object-dataset/1478019952686311006.jpg
1 1478019953180167674.jpg 872 586 926 632 car object-dataset/1478019953180167674.jpg
2 1478019953689774621.jpg 686 566 728 618 truck object-dataset/1478019953689774621.jpg
3 1478019953689774621.jpg 716 578 764 622 car object-dataset/1478019953689774621.jpg
4 1478019953689774621.jpg 826 580 880 626 car object-dataset/1478019953689774621.jpg
### Combine data frames

df_vehicles = pd.concat([df_vehicles1,df_vehicles2]).reset_index()
df_vehicles = df_vehicles.drop('index', 1)
df_vehicles.columns =['File_Path','Frame','Label','ymin','xmin','ymax','xmax']
df_vehicles.head()
File_Path Frame Label ymin xmin ymax xmax
0 object-detection-crowdai/1479498371963069978.jpg 1479498371963069978.jpg Car 533 785 644 905
1 object-detection-crowdai/1479498371963069978.jpg 1479498371963069978.jpg Car 551 89 680 291
2 object-detection-crowdai/1479498371963069978.jpg 1479498371963069978.jpg Car 546 268 650 383
3 object-detection-crowdai/1479498371963069978.jpg 1479498371963069978.jpg Truck 522 455 615 548
4 object-detection-crowdai/1479498371963069978.jpg 1479498371963069978.jpg Truck 522 548 605 625
df_vehicles.tail()
File_Path Frame Label ymin xmin ymax xmax
130675 object-dataset/1478901536388465963.jpg 1478901536388465963.jpg car 552 1048 748 1348
130676 object-dataset/1478901536960505700.jpg 1478901536960505700.jpg car 606 0 780 142
130677 object-dataset/1478901536960505700.jpg 1478901536960505700.jpg car 604 146 692 246
130678 object-dataset/1478901536960505700.jpg 1478901536960505700.jpg car 582 710 618 800
130679 object-dataset/1478901536960505700.jpg 1478901536960505700.jpg car 546 896 790 1228
trans_range = 0
### Augmentation functions

def augment_brightness_camera_images(image):

    ### Augment brightness
    image1 = cv2.cvtColor(image,cv2.COLOR_RGB2HSV)
    random_bright = .25+np.random.uniform()
    #print(random_bright)
    image1[:,:,2] = image1[:,:,2]*random_bright
    image1 = cv2.cvtColor(image1,cv2.COLOR_HSV2RGB)
    return image1

def trans_image(image,bb_boxes_f,trans_range):
    # Translation augmentation
    bb_boxes_f = bb_boxes_f.copy(deep=True)

    tr_x = trans_range*np.random.uniform()-trans_range/2
    tr_y = trans_range*np.random.uniform()-trans_range/2

    Trans_M = np.float32([[1,0,tr_x],[0,1,tr_y]])
    rows,cols,channels = image.shape
    bb_boxes_f['xmin'] = bb_boxes_f['xmin']+tr_x
    bb_boxes_f['xmax'] = bb_boxes_f['xmax']+tr_x
    bb_boxes_f['ymin'] = bb_boxes_f['ymin']+tr_y
    bb_boxes_f['ymax'] = bb_boxes_f['ymax']+tr_y

    image_tr = cv2.warpAffine(image,Trans_M,(cols,rows))

    return image_tr,bb_boxes_f


def stretch_image(img,bb_boxes_f,scale_range):
    # Stretching augmentation

    bb_boxes_f = bb_boxes_f.copy(deep=True)

    tr_x1 = scale_range*np.random.uniform()
    tr_y1 = scale_range*np.random.uniform()
    p1 = (tr_x1,tr_y1)
    tr_x2 = scale_range*np.random.uniform()
    tr_y2 = scale_range*np.random.uniform()
    p2 = (img.shape[1]-tr_x2,tr_y1)

    p3 = (img.shape[1]-tr_x2,img.shape[0]-tr_y2)
    p4 = (tr_x1,img.shape[0]-tr_y2)

    pts1 = np.float32([[p1[0],p1[1]],
                   [p2[0],p2[1]],
                   [p3[0],p3[1]],
                   [p4[0],p4[1]]])
    pts2 = np.float32([[0,0],
                   [img.shape[1],0],
                   [img.shape[1],img.shape[0]],
                   [0,img.shape[0]] ]
                   )

    M = cv2.getPerspectiveTransform(pts1,pts2)
    img = cv2.warpPerspective(img,M,(img.shape[1],img.shape[0]))
    img = np.array(img,dtype=np.uint8)

    bb_boxes_f['xmin'] = (bb_boxes_f['xmin'] - p1[0])/(p2[0]-p1[0])*img.shape[1]
    bb_boxes_f['xmax'] = (bb_boxes_f['xmax'] - p1[0])/(p2[0]-p1[0])*img.shape[1]
    bb_boxes_f['ymin'] = (bb_boxes_f['ymin'] - p1[1])/(p3[1]-p1[1])*img.shape[0]
    bb_boxes_f['ymax'] = (bb_boxes_f['ymax'] - p1[1])/(p3[1]-p1[1])*img.shape[0]

    return img,bb_boxes_f



def get_image_name(df,ind,size=(640,300),augmentation = False,trans_range = 20,scale_range=20):
    ### Get image by name

    file_name = df['File_Path'][ind]
    img = cv2.imread(file_name)
    img_size = np.shape(img)

    img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
    img = cv2.resize(img,size)
    name_str = file_name.split('/')
    name_str = name_str[-1]
    #print(name_str)
    #print(file_name)
    bb_boxes = df[df['Frame'] == name_str].reset_index()
    img_size_post = np.shape(img)

    if augmentation == True:
        img,bb_boxes = trans_image(img,bb_boxes,trans_range)
        img,bb_boxes = stretch_image(img,bb_boxes,scale_range)
        img = augment_brightness_camera_images(img)

    bb_boxes['xmin'] = np.round(bb_boxes['xmin']/img_size[1]*img_size_post[1])
    bb_boxes['xmax'] = np.round(bb_boxes['xmax']/img_size[1]*img_size_post[1])
    bb_boxes['ymin'] = np.round(bb_boxes['ymin']/img_size[0]*img_size_post[0])
    bb_boxes['ymax'] = np.round(bb_boxes['ymax']/img_size[0]*img_size_post[0])
    bb_boxes['Area'] = (bb_boxes['xmax']- bb_boxes['xmin'])*(bb_boxes['ymax']- bb_boxes['ymin'])
    #bb_boxes = bb_boxes[bb_boxes['Area']>400]


    return name_str,img,bb_boxes


def get_mask_seg(img,bb_boxes_f):

    #### Get mask

    img_mask = np.zeros_like(img[:,:,0])
    for i in range(len(bb_boxes_f)):
        #plot_bbox(bb_boxes,i,'g')
        bb_box_i = [bb_boxes_f.iloc[i]['xmin'],bb_boxes_f.iloc[i]['ymin'],
                bb_boxes_f.iloc[i]['xmax'],bb_boxes_f.iloc[i]['ymax']]
        img_mask[bb_box_i[1]:bb_box_i[3],bb_box_i[0]:bb_box_i[2]]= 1.
        img_mask = np.reshape(img_mask,(np.shape(img_mask)[0],np.shape(img_mask)[1],1))
    return img_mask
def plot_im_mask(im,im_mask):
    ### Function to plot image mask

    im = np.array(im,dtype=np.uint8)
    im_mask = np.array(im_mask,dtype=np.uint8)
    plt.subplot(1,3,1)
    plt.imshow(im)
    plt.axis('off')
    plt.subplot(1,3,2)
    plt.imshow(im_mask[:,:,0])
    plt.axis('off')
    plt.subplot(1,3,3)
    plt.imshow(cv2.bitwise_and(im,im,mask=im_mask));
    plt.axis('off')
    plt.show();

def plot_bbox(bb_boxes,ind_bb,color='r',linewidth=2):
    ### Plot bounding box

    bb_box_i = [bb_boxes.iloc[ind_bb]['xmin'],
                bb_boxes.iloc[ind_bb]['ymin'],
                bb_boxes.iloc[ind_bb]['xmax'],
                bb_boxes.iloc[ind_bb]['ymax']]
    plt.plot([bb_box_i[0],bb_box_i[2],bb_box_i[2],
                  bb_box_i[0],bb_box_i[0]],
             [bb_box_i[1],bb_box_i[1],bb_box_i[3],
                  bb_box_i[3],bb_box_i[1]],
             color,linewidth=linewidth)

def plot_im_bbox(im,bb_boxes):
    ### Plot image and bounding box
    plt.imshow(im)
    for i in range(len(bb_boxes)):
        plot_bbox(bb_boxes,i,'g')

        bb_box_i = [bb_boxes.iloc[i]['xmin'],bb_boxes.iloc[i]['ymin'],
                bb_boxes.iloc[i]['xmax'],bb_boxes.iloc[i]['ymax']]
        plt.plot(bb_box_i[0],bb_box_i[1],'rs')
        plt.plot(bb_box_i[2],bb_box_i[3],'bs')
    plt.axis('off');


#### Test translation and stretching augmentations

name_str,img,bb_boxes = get_image_name(df_vehicles,1,augmentation=False,trans_range=0,scale_range=0)
img_mask =get_mask_seg(img,bb_boxes)

tr_x1 = 80
tr_y1 = 30
tr_x2 = 40
tr_y2 = 20



p1 = (tr_x1,tr_y1)
p2 = (img.shape[1]-tr_x2,tr_y1)

p3 = (img.shape[1]-tr_x2,img.shape[0]-tr_y2)
p4 = (tr_x1,img.shape[0]-tr_y2)

pts1 = np.float32([[p1[0],p1[1]],
                   [p2[0],p2[1]],
                   [p3[0],p3[1]],
                   [p4[0],p4[1]]])
pts2 = np.float32([[0,0],
                   [img.shape[1],0],
                   [img.shape[1],img.shape[0]],[0,img.shape[0]] ]
                   )

M = cv2.getPerspectiveTransform(pts1,pts2)
dst = cv2.warpPerspective(img,M,(img.shape[1],img.shape[0]))
dst = np.array(dst,dtype=np.uint8)


plt.figure(figsize=(12,8))
plt.subplot(1,2,1)
plt.imshow(img)
plt.plot(p1[0],p1[1],'mo')
plt.plot(p2[0],p2[1],'mo')
plt.plot(p3[0],p3[1],'mo')
plt.plot(p4[0],p4[1],'mo')
for i in range(len(bb_boxes)):
    plot_bbox(bb_boxes,i,'g')

    bb_box_i = [bb_boxes.iloc[i]['xmin'],bb_boxes.iloc[i]['ymin'],
                bb_boxes.iloc[i]['xmax'],bb_boxes.iloc[i]['ymax']]
    plt.plot(bb_box_i[0],bb_box_i[1],'rs')
    plt.plot(bb_box_i[2],bb_box_i[3],'bs')
plt.axis('off')
plt.subplot(1,2,2)
plt.imshow(dst)
bb_boxes1 = bb_boxes.copy(deep=True)
bb_boxes1['xmin'] = (bb_boxes['xmin'] - p1[0])/(p2[0]-p1[0])*img.shape[1]
bb_boxes1['xmax'] = (bb_boxes['xmax'] - p1[0])/(p2[0]-p1[0])*img.shape[1]
bb_boxes1['ymin'] = (bb_boxes['ymin'] - p1[1])/(p3[1]-p1[1])*img.shape[0]
bb_boxes1['ymax'] = (bb_boxes['ymax'] - p1[1])/(p3[1]-p1[1])*img.shape[0]
plt.plot(0,0,'mo')
plt.plot(img.shape[1],0,'mo')
plt.plot(img.shape[1],img.shape[0],'mo')
plt.plot(0,img.shape[0],'mo')
plot_im_bbox(dst,bb_boxes1)

plt.axis('off');
/home/v/tensorflow3/local/lib/python3.5/site-packages/ipykernel/__main__.py:102: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future

png

#### Test translation and stretching augmentations

name_str,img,bb_boxes = get_image_name(df_vehicles,1,augmentation=False)
img_mask =get_mask_seg(img,bb_boxes)

plt.figure(figsize=(12,8))
plt.subplot(2,2,1)
plot_im_bbox(img,bb_boxes)

plt.subplot(2,2,2)
plt.imshow(img_mask[:,:,0])
plt.axis('off')

plt.subplot(2,2,3)
#bb_boxes1 = bb_boxes.copy()
dst,bb_boxes1 = stretch_image(img,bb_boxes,100)

plt.imshow(dst)

plot_im_bbox(dst,bb_boxes1)

plt.subplot(2,2,4)
img_mask2 =get_mask_seg(dst,bb_boxes1)
plt.imshow(img_mask2[:,:,0])
plt.axis('off');
/home/v/tensorflow3/local/lib/python3.5/site-packages/ipykernel/__main__.py:102: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future

png



#### Test translation and stretching augmentations

name_str,img,bb_boxes = get_image_name(df_vehicles,200,augmentation=False)
img_mask =get_mask_seg(img,bb_boxes)

plt.figure(figsize=(12,8))
plt.subplot(2,2,1)
plot_im_bbox(img,bb_boxes)

plt.subplot(2,2,2)
plt.imshow(img_mask[:,:,0])
plt.axis('off')

plt.subplot(2,2,3)
#bb_boxes1 = bb_boxes.copy()
img_trans,bb_boxes1 = trans_image(img,bb_boxes,100)

plt.imshow(img_trans)

plot_im_bbox(img_trans,bb_boxes1)
img_mask2 =get_mask_seg(img_trans,bb_boxes1)

plt.subplot(2,2,4)
plt.imshow(img_mask2[:,:,0])
plt.axis('off');
/home/v/tensorflow3/local/lib/python3.5/site-packages/ipykernel/__main__.py:102: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future

png

plt.figure(figsize=(12,8))
plt.subplot(2,2,1)
plot_im_bbox(img,bb_boxes)
plt.subplot(2,2,2)
#bb_boxes1 = bb_boxes.copy()
img_trans,bb_boxes1 = trans_image(img,bb_boxes,50)
plt.imshow(img_trans)
plot_im_bbox(img_trans,bb_boxes1)

png

#### Put all the augmentations in 1 function with a flag for augmentation


name_str,img,bb_boxes = get_image_name(df_vehicles,1,augmentation=False)
img_mask =get_mask_seg(img,bb_boxes)


plt.figure(figsize=(6,4))
plt.imshow(img)
plot_im_bbox(img,bb_boxes)
plt.show()

plot_im_mask(img,img_mask)
/home/v/tensorflow3/local/lib/python3.5/site-packages/ipykernel/__main__.py:102: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future

png

png


#### Training generator, generates augmented images
def generate_train_batch(data,batch_size = 32):

    batch_images = np.zeros((batch_size, img_rows, img_cols, 3))
    batch_masks = np.zeros((batch_size, img_rows, img_cols, 1))
    while 1:
        for i_batch in range(batch_size):
            i_line = np.random.randint(len(data)-2000)
            name_str,img,bb_boxes = get_image_name(df_vehicles,i_line,
                                                   size=(img_cols, img_rows),
                                                  augmentation=True,
                                                   trans_range=50,
                                                   scale_range=50
                                                  )
            img_mask = get_mask_seg(img,bb_boxes)
            batch_images[i_batch] = img
            batch_masks[i_batch] =img_mask
        yield batch_images, batch_masks

#### Testing generator, generates augmented images
def generate_test_batch(data,batch_size = 32):
    batch_images = np.zeros((batch_size, img_rows, img_cols, 3))
    batch_masks = np.zeros((batch_size, img_rows, img_cols, 1))
    while 1:
        for i_batch in range(batch_size):
            i_line = np.random.randint(2000)
            i_line = i_line+len(data)-2000
            name_str,img,bb_boxes = get_image_name(df_vehicles,i_line,
                                                   size=(img_cols, img_rows),
                                                  augmentation=False,
                                                   trans_range=0,
                                                   scale_range=0
                                                  )
            img_mask = get_mask_seg(img,bb_boxes)
            batch_images[i_batch] = img
            batch_masks[i_batch] =img_mask
        yield batch_images, batch_masks

##### Image size,
img_rows = 640
img_cols = 960
##### Testing the generator


training_gen = generate_train_batch(df_vehicles,10)
batch_img,batch_mask = next(training_gen)
/home/v/tensorflow3/local/lib/python3.5/site-packages/ipykernel/__main__.py:102: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
### Plotting generator output
for i in range(10):
    im = np.array(batch_img[i],dtype=np.uint8)
    im_mask = np.array(batch_mask[i],dtype=np.uint8)
    plt.subplot(1,3,1)
    plt.imshow(im)
    plt.axis('off')
    plt.subplot(1,3,2)
    plt.imshow(im_mask[:,:,0])
    plt.axis('off')
    plt.subplot(1,3,3)
    plt.imshow(cv2.bitwise_and(im,im,mask=im_mask));
    plt.axis('off')
    plt.show();

png

png

png

png

png

png

png

png

png

png



len(df_vehicles)
130680
### IOU or dice coeff calculation

def IOU_calc(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    intersection = K.sum(y_true_f * y_pred_f)

    return 2*(intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)


def IOU_calc_loss(y_true, y_pred):
    return -IOU_calc(y_true, y_pred)
### Defining a small Unet
### Smaller Unet defined so it fits in memory

def get_small_unet():
    inputs = Input((img_rows, img_cols,3))
    inputs_norm = Lambda(lambda x: x/127.5 - 1.)
    conv1 = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

    conv2 = Convolution2D(16, 3, 3, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution2D(16, 3, 3, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

    conv3 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(pool2)
    conv3 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

    conv4 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool3)
    conv4 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

    conv5 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(pool4)
    conv5 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv5)

    up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=3)
    conv6 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(up6)
    conv6 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv6)

    up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=3)
    conv7 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(up7)
    conv7 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv7)

    up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=3)
    conv8 = Convolution2D(16, 3, 3, activation='relu', border_mode='same')(up8)
    conv8 = Convolution2D(16, 3, 3, activation='relu', border_mode='same')(conv8)

    up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=3)
    conv9 = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(up9)
    conv9 = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(conv9)

    conv10 = Convolution2D(1, 1, 1, activation='sigmoid')(conv9)

    model = Model(input=inputs, output=conv10)


    return model
### Generator

training_gen = generate_train_batch(df_vehicles,1)
smooth = 1.
model = get_small_unet()
model.compile(optimizer=Adam(lr=1e-4),
              loss=IOU_calc_loss, metrics=[IOU_calc])
#model.summary()
### Using previously trained data. Set load_pretrained = False, increase epochs and train for full training.
load_pretrained = True
if load_pretrained == True:
    model.load_weights("model_segn_small_0p72.h5")        
history = model.fit_generator(training_gen,
            samples_per_epoch=1000,
                              nb_epoch=1)
Epoch 1/1


/home/v/tensorflow3/local/lib/python3.5/site-packages/ipykernel/__main__.py:102: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future


1000/1000 [==============================] - 141s - loss: -0.7081 - IOU_calc: 0.7081   
### Save model for use in detection pipeline

model.save('model_detect_SmallUnet.h5')
### Plot model using Keras

from IPython.display import SVG
from keras.utils.visualize_util import model_to_dot
from keras.utils.visualize_util import plot
plot(model, to_file='model.png')
SVG(model_to_dot(model).create(prog='dot', format='svg'))

svg

### Save weights
model.save_weights("model_segn_small_udacity_0p71.h5", overwrite=True)
### Testing generator

testing_gen = generate_test_batch(df_vehicles,20)
np.shape(im)
(640, 960, 3)
import time

start = time.time()

pred_all= model.predict(batch_img)
end = time.time()
end-start
1.5494484901428223
### Test on last frames of data

batch_img,batch_mask = next(testing_gen)
pred_all= model.predict(batch_img)
np.shape(pred_all)

for i in range(20):

    im = np.array(batch_img[i],dtype=np.uint8)
    im_mask = np.array(255*batch_mask[i],dtype=np.uint8)
    im_pred = np.array(255*pred_all[i],dtype=np.uint8)

    rgb_mask_pred = cv2.cvtColor(im_pred,cv2.COLOR_GRAY2RGB)
    rgb_mask_pred[:,:,1:3] = 0*rgb_mask_pred[:,:,1:2]
    rgb_mask_true= cv2.cvtColor(im_mask,cv2.COLOR_GRAY2RGB)
    rgb_mask_true[:,:,0] = 0*rgb_mask_true[:,:,0]
    rgb_mask_true[:,:,2] = 0*rgb_mask_true[:,:,2]

    img_pred = cv2.addWeighted(rgb_mask_pred,0.5,im,0.5,0)
    img_true = cv2.addWeighted(rgb_mask_true,0.5,im,0.5,0)

    plt.figure(figsize=(8,3))
    plt.subplot(1,3,1)
    plt.imshow(im)
    plt.title('Original image')
    plt.axis('off')
    plt.subplot(1,3,2)
    plt.imshow(img_pred)
    plt.title('Predicted segmentation mask')
    plt.axis('off')
    plt.subplot(1,3,3)
    plt.imshow(img_true)
    plt.title('Ground truth BB')
    plt.axis('off')
    plt.show()
/home/v/tensorflow3/local/lib/python3.5/site-packages/ipykernel/__main__.py:102: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

#### Function for drawing bounding boxes, taken from Ryan's code on Udacity

def draw_labeled_bboxes(img, labels):
    # Iterate through all detected cars
    for car_number in range(1, labels[1]+1):
        # Find pixels with each car_number label value
        nonzero = (labels[0] == car_number).nonzero()
        # Identify x and y values of those pixels
        nonzeroy = np.array(nonzero[0])
        nonzerox = np.array(nonzero[1])
        # Define a bounding box based on min/max x and y
        if ((np.max(nonzeroy)-np.min(nonzeroy)>50) & (np.max(nonzerox)-np.min(nonzerox)>50)):
            bbox = ((np.min(nonzerox), np.min(nonzeroy)), (np.max(nonzerox), np.max(nonzeroy)))
            # Draw the box on the image       
            cv2.rectangle(img, bbox[0], bbox[1], (0,0,255),6)
    # Return the image
    return img

def test_new_img(img):
    img = cv2.resize(img,(img_cols, img_rows))
    img = np.reshape(img,(1,img_rows, img_cols,3))
    pred = model.predict(img)
    return pred,img[0]

def get_BB_new_img(img):
    # Take in RGB image
    pred,img = test_new_img(img)
    img  = np.array(img,dtype= np.uint8)
    img_pred = np.array(255*pred[0],dtype=np.uint8)
    heatmap = im_pred[:,:,0]
    labels = label(heatmap)
    draw_img = draw_labeled_bboxes(np.copy(img), labels)
    return draw_img

### Test on new image

test_img = 'test_images/test1.jpg'
im = cv2.imread(test_img)
im = cv2.cvtColor(im,cv2.COLOR_BGR2RGB)

draw_img = get_BB_new_img(im)
test_img = 'test_images/test1.jpg'
im = cv2.imread(test_img)
im = cv2.cvtColor(im,cv2.COLOR_BGR2RGB)
pred,im = test_new_img(im)
im  = np.array(im,dtype= np.uint8)
im_pred = np.array(255*pred[0],dtype=np.uint8)
rgb_mask_pred = cv2.cvtColor(im_pred,cv2.COLOR_GRAY2RGB)
rgb_mask_pred[:,:,1:3] = 0*rgb_mask_pred[:,:,1:2]



img_pred = cv2.addWeighted(rgb_mask_pred,0.55,im,1,0)



#heatmap = im_pred[:,:,0]

#labels = label(heatmap)
# Draw bounding boxes on a copy of the image
#draw_img = draw_labeled_bboxes(np.copy(im), labels)
# Display the image
#img_pred = im
#im_pred[:,:,]

draw_img = get_BB_new_img(im)

plt.figure(figsize=(10,5))
plt.subplot(1,3,1)
plt.imshow(im)
plt.title('Original')
plt.axis('off')
plt.subplot(1,3,2)
plt.imshow(img_pred)
plt.title('Segmentation')
plt.axis('off')
plt.subplot(1,3,3)
plt.imshow(draw_img)
plt.title('Bounding Box')
plt.axis('off');



diff = end_time - start_time
diff
0.06508636474609375

png

#### EXTRA STUFF THAT I DIDNT USE.
plt.imshow(im_pred[:,:,0])

   

   

png

heatmap = im_pred[:,:,0]

labels = label(heatmap)
# Draw bounding boxes on a copy of the image
draw_img = draw_labeled_bboxes(np.copy(im), labels)
# Display the image
plt.imshow(draw_img)
plt.axis('off');

png




plt.imshow(labels[0],cmap='gray')

   

   

png

np.unique(labels[0])
array([0, 1, 2, 3, 4, 5, 6, 7], dtype=int32)
car_label = 1

blob_non0 = (car_label == labels[0])

img_0 = np.copy(heatmap)*0
img_0[blob_non0] = 255
plt.imshow(blob_non0)
img_cny = cv2.Canny(img_0,128,255)
plt.imshow(img_cny,cmap='gray')

   

   

png








Owner
Vivek Yadav
Vivek Yadav
Simple and lightweight Spotify Overlay written in Python.

Simple Spotify Overlay This is a simple yet powerful Spotify Overlay. About I have been looking for something like this ever since I got Spotify. I th

27 Sep 03, 2022
Render Jupyter notebook in the terminal

jut - JUpyter notebook Terminal viewer. The command line tool view the IPython/Jupyter notebook in the terminal. Install pip install jut Usage $jut --

Kracekumar 169 Dec 27, 2022
Generate a roam research like Network Graph view from your Notion pages.

Notion Graph View Export Notion pages to a Roam Research like graph view.

Steve Sun 214 Jan 07, 2023
GD-UltraHack - A Mod Menu for Geometry Dash. Specifically a MegahackV5 clone in Python. Only for Windows

GD UltraHack: The Mod Menu that Nobody asked for. This is a mod menu for the gam

zeo 1 Jan 05, 2022
Easily configurable, chart dashboards from any arbitrary API endpoint. JSON config only

Flask JSONDash Easily configurable, chart dashboards from any arbitrary API endpoint. JSON config only. Ready to go. This project is a flask blueprint

Chris Tabor 3.3k Dec 31, 2022
Calendar heatmaps from Pandas time series data

Note: See MarvinT/calmap for the maintained version of the project. That is also the version that gets published to PyPI and it has received several f

Martijn Vermaat 195 Dec 22, 2022
Ana's Portfolio

Ana's Portfolio ✌️ Welcome to my Portfolio! You will find here different Projects I have worked on (from scratch) 💪 Projects 💻 1️⃣ Hangman game (Mad

Ana Katherine Cortes Sobrino 9 Mar 15, 2022
Plot and save the ground truth and predicted results of human 3.6 M and CMU mocap dataset.

Visualization-of-Human3.6M-Dataset Plot and save the ground truth and predicted results of human 3.6 M and CMU mocap dataset. human-motion-prediction

Gaurav Kumar Yadav 5 Nov 18, 2022
A simple agent-based model used to teach the basics of OOP in my lectures

Pydemic A simple agent-based model of a pandemic. This is used to teach basic principles of object-oriented programming to master students. It is not

Fabien Maussion 2 Jun 08, 2022
web application for flight log analysis & review

Flight Review This is a web application for flight log analysis. It allows users to upload ULog flight logs, and analyze them through the browser. It

PX4 Drone Autopilot 145 Dec 20, 2022
A simple interpreted language for creating basic mathematical graphs.

graphr Introduction graphr is a small language written to create basic mathematical graphs. It is an interpreted language written in python and essent

2 Dec 26, 2021
Some useful extensions for Matplotlib.

mplx Some useful extensions for Matplotlib. Contour plots for functions with discontinuities plt.contour mplx.contour(max_jump=1.0) Matplotlib has pro

Nico Schlömer 519 Dec 30, 2022
Movies-chart - A CLI app gets the top 250 movies of all time from imdb.com and the top 100 movies from rottentomatoes.com

movies-chart This CLI app gets the top 250 movies of all time from imdb.com and

3 Feb 17, 2022
Visualize the bitcoin blockchain from your local node

Project Overview A new feature in Bitcoin Core 0.20 allows users to dump the state of the blockchain (the UTXO set) using the command dumptxoutset. I'

18 Sep 11, 2022
Analytical Web Apps for Python, R, Julia, and Jupyter. No JavaScript Required.

Dash Dash is the most downloaded, trusted Python framework for building ML & data science web apps. Built on top of Plotly.js, React and Flask, Dash t

Plotly 17.9k Dec 31, 2022
Epagneul is a tool to visualize and investigate windows event logs

epagneul Epagneul is a tool to visualize and investigate windows event logs. Dep

jurelou 190 Dec 13, 2022
Lumen provides a framework for visual analytics, which allows users to build data-driven dashboards from a simple yaml specification

Lumen project provides a framework for visual analytics, which allows users to build data-driven dashboards from a simple yaml specification

HoloViz 120 Jan 04, 2023
Movie recommendation using RASA, TigerGraph

Demo run: The below video will highlight the runtime of this setup and some sample real-time conversations using the power of RASA + TigerGraph, Steps

Sudha Vijayakumar 3 Sep 10, 2022
Matplotlib JOTA style for making figures

Matplotlib JOTA style for making figures This repo has Matplotlib JOTA style to format plots and figures for publications and presentation.

JOTA JORNALISMO 2 May 05, 2022
CompleX Group Interactions (XGI) provides an ecosystem for the analysis and representation of complex systems with group interactions.

XGI CompleX Group Interactions (XGI) is a Python package for the representation, manipulation, and study of the structure, dynamics, and functions of

Complex Group Interactions 67 Dec 28, 2022