Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Overview

Toy Machine Learning Pipeline

Table of Contents
  1. About
  2. Getting Started
  3. ML task description and evaluation procedure
  4. Dataset description
  5. Repository structure
  6. Utils documentation
  7. Roadmap
  8. Contributing
  9. Contact

About

This is a toy example of a standalone ML pipeline written entirely in Python. No external tools are incorporated into the master branch. I built this for two reasons:

  1. To experiment with my own ideas for MLOps tools, as it is hard to develop devtools in a vacuum :)
  2. To have something to integrate existing MLOps tools with so I can have real opinions

The following diagram describes the pipeline at a high level. The README describes it in more detail.

Diagram

Getting started

This pipeline is broken down into several components, described in a high level by the directories in this repository. See the Makefile for various commands you can run, but to serve the inference API locally, you can do the following:

  1. git clone the repository
  2. In the root directory of the repo, run make serve
  3. [OPTIONAL] In a new tab, run make inference to ping the API with some sample records

All Python dependencies and virtual environment creation is handled by the Makefile. See setup.py to see the packages installed into the virtual environment, which mainly consist of basic Python packages such as pandas or sklearn.

ML task description and evaluation procedure

We train a model to predict whether a passenger in a NYC taxicab ride will give the driver a large tip. This is a binary classification task. A large tip is arbitrarily defined as greater than 20% of the total fare (before tip). To evaluate the model or measure the efficacy of the model, we measure the F1 score.

The current best model is an instance of sklearn.ensemble.RandomForestClassifier with max_depth of 10 and other default parameters. The test set F1 score is 0.716. I explored this toy task earlier in my debugging ML talk.

Dataset description

We use the yellow taxicab trip records from the NYC Taxi & Limousine Comission public dataset, which is stored in a public aws S3 bucket. The data dictionary can be found here and is also shown below:

Field Name Description
VendorID A code indicating the TPEP provider that provided the record. 1= Creative Mobile Technologies, LLC; 2= VeriFone Inc.
tpep_pickup_datetime The date and time when the meter was engaged.
tpep_dropoff_datetime The date and time when the meter was disengaged.
Passenger_count The number of passengers in the vehicle. This is a driver-entered value.
Trip_distance The elapsed trip distance in miles reported by the taximeter.
PULocationID TLC Taxi Zone in which the taximeter was engaged.
DOLocationID TLC Taxi Zone in which the taximeter was disengaged
RateCodeID The final rate code in effect at the end of the trip. 1= Standard rate, 2=JFK, 3=Newark, 4=Nassau or Westchester, 5=Negotiated fare, 6=Group ride
Store_and_fwd_flag This flag indicates whether the trip record was held in vehicle memory before sending to the vendor, aka “store and forward,” because the vehicle did not have a connection to the server. Y= store and forward trip, N= not a store and forward trip
Payment_type A numeric code signifying how the passenger paid for the trip. 1= Credit card, 2= Cash, 3= No charge, 4= Dispute, 5= Unknown, 6= Voided trip
Fare_amount The time-and-distance fare calculated by the meter.
Extra Miscellaneous extras and surcharges. Currently, this only includes the $0.50 and $1 rush hour and overnight charges.
MTA_tax $0.50 MTA tax that is automatically triggered based on the metered rate in use.
Improvement_surcharge $0.30 improvement surcharge assessed trips at the flag drop. The improvement surcharge began being levied in 2015.
Tip_amount Tip amount – This field is automatically populated for credit card tips. Cash tips are not included.
Tolls_amount Total amount of all tolls paid in trip.
Total_amount The total amount charged to passengers. Does not include cash tips.

Repository structure

The pipeline contains multiple components, each organized into the following high-level subdirectories:

  • etl
  • training
  • inference

Pipeline components

Any applied ML pipeline is essentially a series of functions applied one after the other, such as data transformations, models, and output transformations. This pipeline was initially built in a lightweight fashion to run on a regular laptop with around 8 GB of RAM. The logic in these components is a first pass; there is a lot of room to improve.

The following table describes the components of this pipeline, in order:

Name Description How to run File(s)
Cleaning Reads the dataset (stored in a public S3 bucket) and performs very basic cleaning (drops rows outside the time range or with $0-valued fares) make cleaning etl/cleaning.py
Featuregen Generates basic features for the ML model make featuregen etl/featuregen.py
Split Splits the features into train and test sets make split training/split.py
Training Trains a random forest classifier on the train set and evaluates it on the test set make training training/train.py
Inference Locally serves an API that is essentially a wrapper around the predict function make serve, make inference [inference/app.py, inference/inference.py]

Data storage

The inputs and outputs for the pipeline components, as well as other artifacts, are stored in a public S3 bucket named toy-applied-ml-pipeline located in us-west-1. Read access is universal and doesn't require special permissions. Write access is limited to those with credentials. If you are interested in contributing and want write access, please contact me directly describing how you would like to be involved, and I can send you keys.

The bucket has a scratch folder, where random scratch files live. These random scratch files were likely generated by the write_file function in utils.io. The bulk of the bucket lies in the dev directory, or s3://toy-applied-ml-pipeline/dev.

The dev directory's subdirectories represent the components in the pipeline. These subdirectories contain the outputs of each component respectively, where the outputs are versioned with the timestamp the component was run. The utils.io library contains helper functions to write outputs and load the latest component output as input to another component. To inspect the filesystem structure further, you can call io.list_files(dirname), which returns the immediate files in dirname.

If you have write permissions, store your keys/ids in an .env file, and the Makefile will automatically pick it up. If you do not have write permissions, you will run into an error if you try to write to the S3 bucket.

Utils documentation

The utils directory contains helper functions and abstractions for expanding upon the current pipeline. Tests are in utils/tests.py. Note that only the io functions are tested as of now.

io

utils/io.py contains various helper functions to interface with S3. The two most useful functions are:

def load_output_df(component: str, dev: bool = True, version: str = None) -> pd.DataFrame:
  """
    This function loads the latest version of data that was produced by a component.
    Args:
        component (str): component name that we want to get the output from
        dev (bool): whether this is run in development or "production" mode
        version (str, optional): specified version of the data
    Returns:
        df (pd.DataFrame): dataframe corresponding to the data in the latest version of the output for the specified component
    """
    ...

def save_output_df(df: pd.DataFrame, component: str, dev: bool = True, overwrite: bool = False, version: str = None) -> str:
    """
    This function writes the output of a pipeline component (a dataframe) to a parquet file.
    Args:
        df (pd.DataFrame): dataframe representing the output
        component (str): name of the component that produced the output (ex: clean)
        dev (bool, optional): whether this is run in development or "production" mode
        overwrite (bool, optional): whether to overwrite a file with the same name
        version (str, optional): optional version for the output. If not specified, the function will create the version number.
    Returns:
        path (str): Full path that the file can be accessed at
    """
    ...

Note that save_output_df's default parameters are set such that you cannot overwrite an existing file. You can change this by setting overwrite = True.

Feature generators

utils.feature_generators.py contains the lightweight abstraction for a feature generator to make it easy for someone to create a new feature. The abstraction is as follows:

class FeatureGenerator(ABC):
    """Abstract class for a feature generator."""

    def __init__(self, name: str, required_columns: typing.List[str]):
        """Constructor stores the name of the feature and columns required in a df to construct that feature."""
        self.name = name
        self.required_columns = required_columns

    @abstractmethod
    def compute(self):
        pass

    @abstractmethod
    def schema(self):
        pass

See utils.feature_generators.py for examples on how to create specific feature types and etl/featuregen.py for an example on how to create the actual instances of the features themselves.

Models

utils/models.py contains the ModelWrapper abstraction. This abstraction is essentially a wrapper around a model and consists of:

  • the model binary
  • pointer to dataset(s)
  • metric values

To use this abstraction, you must create a subclass of ModelWrapper and implement the preprocess, train, predict, and score methods. The base class also provides methods to save and load the ModelWrapper object. It will fail to save if the client has not added data paths and metrics to the object.

An example of a subclass of ModelWrapper is the RandomForestModelWrapper, which is also found in utils/models.py. The RandomForestModelWrapper client usage example is in training/train.py and is partially shown below:

from utils import models

# Create and train model
mw = models.RandomForestModelWrapper(
    feature_columns=feature_columns, model_params=model_params)
mw.train(train_df, label_column)

# Score model
train_score = mw.score(train_df, label_column)
test_score = mw.score(test_df, label_column)

mw.add_data_path('train_df', train_file_path)
mw.add_data_path('test_df', test_file_path)
mw.add_metric('train_f1', train_score)
mw.add_metric('test_f1', test_score)

# Save model
print(mw.save('training/models'))

# Load latest model version
reloaded_mw = models.RandomForestModelWrapper.load('training/models')
test_preds = reloaded_mw.predict(test_df)

Roadmap

See the open issues for tickets corresponding to feature ideas. The issues in this repo are mainly tagged either data science or engineering.

Contributing

Having a toy example of an ML pipeline isn't just nice to have for people experimenting with MLOps tools. ML beginners or data science enthusiasts looking to understand how to build pipelines around ML models can also benefit from this repository.

Anyone is welcome to contribute, and your contribution is greatly appreciated! Feel free to either create issues or pull requests to address issues.

  1. Fork the repo
  2. Create your branch (git checkout -b YOUR_GITHUB_USERNAME/somefeature)
  3. Make changes and add files to the commit (git add .)
  4. Commit your changes (git commit -m 'Add something')
  5. Push to your branch (git push origin YOUR_GITHUB_USERNAME/somefeature)
  6. Make a pull request

Contact

Original author: Shreya Shankar

Email: [email protected]

Owner
Shreya Shankar
Trying to make machine learning work in the real world. Previously at @viaduct-ai, @google-research, @facebook, and @Stanford computer science.
Shreya Shankar
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

Justin Terry 32 Nov 09, 2021
CorNet Correlation Networks for Extreme Multi-label Text Classification

CorNet Correlation Networks for Extreme Multi-label Text Classification Prerequisites python==3.6.3 pytorch==1.2.0 torchgpipe==0.0.5 click==7.0 ruamel

Guangxu Xun 38 Dec 31, 2022
iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform

iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform This repo try to implement iSTFTNet : Fast

Rishikesh (ऋषिकेश) 126 Jan 02, 2023
Sample data associated with the Aurora-BP study

The Aurora-BP Study and Dataset This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset

Microsoft 16 Dec 12, 2022
Interpretable Models for NLP using PyTorch

This repo is deprecated. Please find the updated package here. https://github.com/EdGENetworks/anuvada Anuvada: Interpretable Models for NLP using PyT

Sandeep Tammu 19 Dec 17, 2022
A complete NLP guideline for enthusiasts

NLP-NINJA A complete guide for Natural Language Processing in Python Table of Contents S.No. Topic Level Meaning 1 Tokenization 🤍 Beginner 2 Stemming

MAINAK CHAUDHURI 22 Dec 27, 2022
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

42 Dec 31, 2022
Retraining OpenAI's GPT-2 on Discord Chats

Train OpenAI's GPT-2 on Discord Chats Retraining a Text Generation Model on Discord Chats using gpt-2-simple that wraps existing model fine-tuning and

Ayush Mishra 4 Oct 27, 2022
Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 08, 2022
This is a project of data parallel that running on NLP tasks.

This is a project of data parallel that running on NLP tasks.

2 Dec 12, 2021
End-to-end MLOps pipeline of a BERT model for emotion classification.

image source EmoBERT-MLOps The goal of this repository is to build an end-to-end MLOps pipeline based on the MLOps course from Made with ML, but this

Dimitre Oliveira 4 Nov 06, 2022
A python package for deep multilingual punctuation prediction.

This python library predicts the punctuation of English, Italian, French and German texts. We developed it to restore the punctuation of transcribed spoken language.

Oliver Guhr 27 Dec 22, 2022
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

What is MUSE? MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE). MUS

Dani El-Ayyass 47 Sep 05, 2022
This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular intervals.It sends out the most recent news at random!

Nepali-news-notifier This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular in

Sachit Yadav 1 Feb 11, 2022
Py65 65816 - Add support for the 65C816 to py65

Add support for the 65C816 to py65 Py65 (https://github.com/mnaberez/py65) is a

4 Jan 04, 2023
Code for "Generative adversarial networks for reconstructing natural images from brain activity".

Reconstruct handwritten characters from brains using GANs Example code for the paper "Generative adversarial networks for reconstructing natural image

K. Seeliger 2 May 17, 2022
Repository for Graph2Pix: A Graph-Based Image to Image Translation Framework

Graph2Pix: A Graph-Based Image to Image Translation Framework Installation Install the dependencies in env.yml $ conda env create -f env.yml $ conda a

18 Nov 17, 2022
STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch.

st3 STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch. Currently it supports converting pbmm models to pt scripts with integra

Vlad Ki 8 Oct 18, 2021
Repository for fine-tuning Transformers 🤗 based seq2seq speech models in JAX/Flax.

Seq2Seq Speech in JAX A JAX/Flax repository for combining a pre-trained speech encoder model (e.g. Wav2Vec2, HuBERT, WavLM) with a pre-trained text de

Sanchit Gandhi 21 Dec 14, 2022