Sequencer: Deep LSTM for Image Classification

Related tags

Audiosequencer
Overview

Sequencer: Deep LSTM for Image Classification

arXiv Support Ukraine

Created by

This repository contains implementation for Sequencer.

Abstract

In recent computer vision research, the advent of the Vision Transformer (ViT) has rapidly revolutionized various architectural design efforts: ViT achieved state-of-the-art image classification performance using self-attention found in natural language processing, and MLP-Mixer achieved competitive performance using simple multi-layer perceptrons. In contrast, several studies have also suggested that carefully redesigned convolutional neural networks (CNNs) can achieve advanced performance comparable to ViT without resorting to these new ideas. Against this background, there is growing interest in what inductive bias is suitable for computer vision. Here we propose Sequencer, a novel and competitive architecture alternative to ViT that provides a new perspective on these issues. Unlike ViTs, Sequencer models long-range dependencies using LSTMs rather than self-attention layers. We also propose a two-dimensional version of Sequencer module, where an LSTM is decomposed into vertical and horizontal LSTMs to enhance performance. Despite its simplicity, several experiments demonstrate that Sequencer performs impressively well: Sequencer2D-L, with 54M parameters, realizes 84.6% top-1 accuracy on only ImageNet-1K. Not only that, we show that it has good transferability and the robust resolution adaptability on double resolution-band.

Schematic diagrams

The overall architecture of Sequencer2D is similar to the typical hierarchical ViT and Visual MLP. It uses Sequencer2D blocks instead of Transformer blocks:

Sequencer

Sequencer2D block replaces the Transformer's self-attention layer with an LSTM-based layer like BiLSTM2D layer:

Sequencer2D

BiLSTM2D includes a vertical LSTM and a horizontal LSTM:

BiLSTM2D

Model Zoo

We provide our Sequencer models pretrained on ImageNet-1K:

name arch Params FLOPs [email protected] download
Sequencer2D-S sequencer2d_s 28M 8.4G 82.3 here
Sequencer2D-M sequencer2d_m 38M 11.1G 82.8 here
Sequencer2D-L sequencer2d_l 54M 16.6G 83.4 here

Usage

Requirements

  • torch>=1.10.0
  • torchvision
  • timm==0.5.4
  • Pillow
  • matplotlib
  • scipy
  • etc., see requirements.txt

Data preparation

Download and extract ImageNet images. The directory structure should be as follows.

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Traning

Command line for training Sequencer models on ImageNet from scratch.

./distributed_train.sh 8 /path/to/imagenet --model sequencer2d_s -b 256 -j 8 --opt adamw --epochs 300 --sched cosine --native-amp --img-size 224 --drop-path 0.1 --lr 2e-3 --weight-decay 0.05 --remode pixel --reprob 0.25 --aa rand-m9-mstd0.5-inc1 --smoothing 0.1 --mixup 0.8 --cutmix 1.0 --warmup-lr 1e-6 --warmup-epochs 20

Command line for fine-tuning a pre-trained model at higher resolution.

./distributed_train.sh 8 /path/to/imagenet --model sequencer2d_l --pretrained -b 64 -j 8 --opt adamw --epochs 30 --sched cosine --native-amp --input-size 3 392 392 --img-size 392 --crop-pct 1.0 --drop-path 0.4 --lr 5e-5 --weight-decay 1e-8 --remode pixel --reprob 0.25 --aa rand-m9-mstd0.5-inc1 --smoothing 0.1 --mixup 0.8 --cutmix 1.0 --warmup-epochs 0 --cooldown-epochs 0

Command line for fine-tuning a pre-trained model on a transfer learning dataset.

./distributed_train.sh 4 /path/to/cifar10 --model sequencer2d_s -b 128 -j 4 --num-classes 10 --dataset torch/cifar10 --pretrained --opt adamw --epochs 200 --sched cosine --native-amp --img-size 224 --clip-grad 1 --drop-path 0.1 --lr 0.0001 --weight-decay 1e-4 --remode pixel --aa rand-m9-mstd0.5-inc1 --smoothing 0.1 --mixup 0.8 --cutmix 1.0 --warmup-lr 1e-6 --warmup-epochs 5

Validation

To evaluate our Sequencer models, run:

python validate.py /path/to/imagenet --model sequencer2d_s -b 16 --input-size 3 224 224 --amp

Reference

You may want to cite:

@article{tatsunami2022sequencer,
  title={Sequencer: Deep LSTM for Image Classification},
  author={Tatsunami, Yuki and Taki, Masato},
  journal={arXiv preprint arXiv:2205.01972},
  year={2022}
}

Acknowledgment

This implementation is based on pytorch-image-models by Ross Wightman. We thank for his brilliant work.

We thank Graduate School of Artificial Intelligence and Science, Rikkyo University (Rikkyo AI) which supports us with computational resources, facilities, and others. logo-rikkyo-ai
AnyTech Co. Ltd. provided valuable comments on the early versions and encouragement. We thank them for their cooperation. In particular, We thank Atsushi Fukuda for organizing discussion opportunities. logo-anytech
You might also like...
Simple-Image-Classification - Simple Image Classification Code (PyTorch)
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

Deep learning based hand gesture recognition using LSTM and MediaPipie.
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

End-to-end image captioning with EfficientNet-b3 + LSTM with Attention

Image captioning End-to-end image captioning with EfficientNet-b3 + LSTM with Attention Model is seq2seq model. In the encoder pretrained EfficientNet

Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

Using LSTM write Tang poetry
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Tensorflow-based CNN+LSTM trained with CTC-loss for OCR

Overview This collection demonstrates how to construct and train a deep, bidirectional stacked LSTM using CNN features as input with CTC loss to perfo

CNN+LSTM+CTC based OCR implemented using tensorflow.

CNN_LSTM_CTC_Tensorflow CNN+LSTM+CTC based OCR(Optical Character Recognition) implemented using tensorflow. Note: there is No restriction on the numbe

A small C++ implementation of LSTM networks, focused on OCR.

clstm CLSTM is an implementation of the LSTM recurrent neural network model in C++, using the Eigen library for numerical computations. Status and sco

OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Comments
Releases(weights)
Owner
Yuki Tatsunami
Yuki Tatsunami
Implicit neural differentiable FM synthesizer

Implicit neural differentiable FM synthesizer The purpose of this project is to emulate arbitrary sounds with FM synthesis, where the parameters of th

Andreas Jansson 34 Nov 06, 2022
An Amazon Music client for Linux (unpretentious)

Amusiz An Amazon Music client for Linux (unpretentious) ↗️ Install You can install Amusiz in multiple ways, choose your favorite. 🚀 AppImage Here you

Mirko Brombin 25 Nov 08, 2022
無料で使える中品質なテキスト読み上げソフトウェア、VOICEVOXのコア

無料で使える中品質なテキスト読み上げソフトウェア、VOICEVOXのコア

Hiroshiba 0 Aug 29, 2022
Gateware for the Terasic/Arrow DECA board, to become a USB2 high speed audio interface

DECA USB Audio Interface DECA based USB 2.0 High Speed audio interface Status / current limitations enumerates as class compliant audio device on Linu

Hans Baier 16 Mar 21, 2022
A python program for visualizing MIDI files, and displaying them in a spiral layout

SpiralMusic_python A python program for visualizing MIDI files, and displaying them in a spiral layout For a hardware version using Teensy & LED displ

Gavin 6 Nov 23, 2022
Algorithmic Multi-Instrumental MIDI Continuation Implementation

Matchmaker Algorithmic Multi-Instrumental MIDI Continuation Implementation Taming large-scale MIDI datasets with algorithms This is a WIP so please ch

Alex 2 Mar 11, 2022
Cobra is a highly-accurate and lightweight voice activity detection (VAD) engine.

On-device voice activity detection (VAD) powered by deep learning.

Picovoice 88 Dec 16, 2022
Audio Retrieval with Natural Language Queries: A Benchmark Study

Audio Retrieval with Natural Language Queries: A Benchmark Study Paper | Project page | Text-to-audio search demo This repository is the implementatio

21 Oct 31, 2022
Reading list for research topics in sound event detection

Sound event detection aims at processing the continuous acoustic signal and converting it into symbolic descriptions of the corresponding sound events present at the auditory scene.

Soham 64 Jan 05, 2023
IDing the songs played on the do you radio show

IDing the songs played on the do you radio show

Rasmus Jones 36 Nov 15, 2022
Royal Music You can play music and video at a time in vc

Royals-Music Royal Music You can play music and video at a time in vc Commands SOON String STRING_SESSION Deployment 🎖 Credits • 🇸ᴏᴍʏᴀ⃝🇯ᴇᴇᴛ • 🇴ғғɪ

2 Nov 23, 2021
A python program to cut longer MP3 files (i.e. recordings of several songs) into the individual tracks.

I'm writing a python script to cut longer MP3 files (i.e. recordings of several songs) into the individual tracks called ReCut. So far there are two

Dönerspiess 1 Oct 27, 2021
This library provides common speech features for ASR including MFCCs and filterbank energies.

python_speech_features This library provides common speech features for ASR including MFCCs and filterbank energies. If you are not sure what MFCCs ar

James Lyons 2.2k Jan 04, 2023
Graphical interface to control granular sound synthesis.

Granular sound synthesis interface SoundGrain is a graphical interface where users can draw and edit trajectories to control granular sound synthesis

Olivier Bélanger 122 Dec 10, 2022
DaisyXmusic ❤ A bot that can play music on Telegram Group and Channel Voice Chats

DaisyXmusic ❤ is the best and only Telegram VC player with playlists, Multi Playback, Channel play and more

TeamOfDaisyX 34 Oct 22, 2022
Accompanying code for our paper "Point Cloud Audio Processing"

Point Cloud Audio Processing Krishna Subramani1, Paris Smaragdis1 1UIUC Paper For the necessary libraries/prerequisites, please use conda/anaconda to

Krishna Subramani 17 Nov 17, 2022
An 8D music player made to enjoy Halloween this year!🤘

HAPPY HALLOWEEN buddy! Split Player Hello There! Welcome to SplitPlayer... Supposed To Be A 8DPlayer.... You Decide.... It can play the ordinary audio

Akshat Kumar Singh 1 Nov 04, 2021
Real-Time Spherical Microphone Renderer for binaural reproduction in Python

ReTiSAR Implementation of the Real-Time Spherical Microphone Renderer for binaural reproduction in Python [1][2]. Contents: | Requirements | Setup | Q

Division of Applied Acoustics at Chalmers University of Technology 51 Dec 17, 2022
Official implementation of A cappella: Audio-visual Singing VoiceSeparation, from BMVC21

Y-Net Official implementation of A cappella: Audio-visual Singing VoiceSeparation, British Machine Vision Conference 2021 Project page: ipcv.github.io

Juan F. Montesinos 12 Oct 22, 2022
extract unpack asset file (form unreal engine 4 pak) with extenstion *.uexp which contain awb/acb (cri/cpk like) sound or music resource

Uexp2Awb extract unpack asset file (form unreal engine 4 pak) with extenstion .uexp which contain awb/acb (cri/cpk like) sound or music resource. i ju

max 6 Jun 22, 2022