Implementation of "Slow-Fast Auditory Streams for Audio Recognition, ICASSP, 2021" in PyTorch

Overview

Auditory Slow-Fast

This repository implements the model proposed in the paper:

Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, Dima Damen, Slow-Fast Auditory Streams for Audio Recognition, ICASSP, 2021

Project's webpage

arXiv paper

Citing

When using this code, kindly reference:

@ARTICLE{Kazakos2021SlowFastAuditory,
   title={Slow-Fast Auditory Streams For Audio Recognition},
   author={Kazakos, Evangelos and Nagrani, Arsha and Zisserman, Andrew and Damen, Dima},
           journal   = {CoRR},
           volume    = {abs/2103.03516},
           year      = {2021},
           ee        = {https://arxiv.org/abs/2103.03516},
}

Pretrained models

You can download our pretrained models on VGG-Sound and EPIC-KITCHENS-100:

  • Slow-Fast (EPIC-KITCHENS-100) link
  • Slow (EPIC-KITCHENS-100) link
  • Fast (EPIC-KITCHENS-100) link
  • Slow-Fast (VGG-Sound) link
  • Slow (VGG-Sound) link
  • Fast (VGG-Sound) link

Preparation

  • Requirements:
    • PyTorch 1.7.1
    • librosa: conda install -c conda-forge librosa
    • h5py: conda install h5py
    • wandb: pip install wandb
    • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
    • simplejson: pip install simplejson
    • psutil: pip install psutil
    • tensorboard: pip install tensorboard
  • Add this repository to $PYTHONPATH.
export PYTHONPATH=/path/to/auditory-slow-fast/slowfast:$PYTHONPATH
  • VGG-Sound:
    1. Download the audio. For instructions see here
    2. Download train.pkl (link) and test.pkl (link). I converted the original train.csv and test.csv (found here) to pickle files with column names for easier use
  • EPIC-KITCHENS:
    1. From the annotation repository of EPIC-KITCHENS-100 (link), download: EPIC_100_train.pkl, EPIC_100_validation.pkl, and EPIC_100_test_timestamps.pkl. EPIC_100_train.pkl and EPIC_100_validation.pkl will be used for training/validation, while EPIC_100_test_timestamps.pkl can be used to obtain the scores to submit in the AR challenge.
    2. Download all the videos of EPIC-KITCHENS-100 using the download scripts found here, where you can also find detailed instructions on using the scripts.
    3. Extract audio from the videos by running:
    python audio_extraction/extract_audio.py /path/to/videos /output/path 
    
    1. Save audio in HDF5 format by running:
    python audio_extraction/wav_to_hdf5.py /path/to/audio /output/hdf5/EPIC-KITCHENS-100_audio.hdf5
    

Training/validation on EPIC-KITCHENS-100

To train the model run (fine-tuning from VGG-Sound pretrained model):

python tools/run_net.py --cfg configs/EPIC-KITCHENS/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/output_dir EPICKITCHENS.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 
EPICKITCHENS.ANNOTATIONS_DIR /path/to/annotations TRAIN.CHECKPOINT_FILE_PATH /path/to/VGG-Sound/pretrained/model

To train from scratch remove TRAIN.CHECKPOINT_FILE_PATH /path/to/VGG-Sound/pretrained/model.

You can also train the individual streams. For example, for training Slow run:

python tools/run_net.py --cfg configs/EPIC-KITCHENS/SLOW_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/output_dir EPICKITCHENS.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 
EPICKITCHENS.ANNOTATIONS_DIR /path/to/annotations TRAIN.CHECKPOINT_FILE_PATH /path/to/VGG-Sound/pretrained/model

To validate the model run:

python tools/run_net.py --cfg configs/EPIC-KITCHENS/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/experiment_dir EPICKITCHENS.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 
EPICKITCHENS.ANNOTATIONS_DIR /path/to/annotations TRAIN.ENABLE False TEST.ENABLE True 
TEST.CHECKPOINT_FILE_PATH /path/to/experiment_dir/checkpoints/checkpoint_best.pyth

To obtain scores on the test set run:

python tools/run_net.py --cfg configs/EPIC-KITCHENS/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/experiment_dir EPICKITCHENS.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 
EPICKITCHENS.ANNOTATIONS_DIR /path/to/annotations TRAIN.ENABLE False TEST.ENABLE True 
TEST.CHECKPOINT_FILE_PATH /path/to/experiment_dir/checkpoints/checkpoint_best.pyth 
EPICKITCHENS.TEST_LIST EPIC_100_test_timestamps.pkl EPICKITCHENS.TEST_SPLIT test

Training/validation on VGG-Sound

To train the model run:

python tools/run_net.py --cfg configs/VGG-Sound/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/output_dir VGGSOUND.AUDIO_DATA_DIR /path/to/dataset 
VGGSOUND.ANNOTATIONS_DIR /path/to/annotations 

To validate the model run:

python tools/run_net.py --cfg configs/VGG-Sound/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/experiment_dir VGGSOUND.AUDIO_DATA_DIR /path/to/dataset 
VGGSOUND.ANNOTATIONS_DIR /path/to/annotations TRAIN.ENABLE False TEST.ENABLE True 
TEST.CHECKPOINT_FILE_PATH /path/to/experiment_dir/checkpoints/checkpoint_best.pyth

License

The code is published under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, found here.

Owner
Evangelos Kazakos
Evangelos Kazakos
User-friendly Voice Cloning Application

Multi-Language-RTVC stands for Multi-Language Real Time Voice Cloning and is a Voice Cloning Tool capable of transfering speaker-specific audio featur

Sven Eschlbeck 19 Dec 30, 2022
MUSIC-AVQA, CVPR2022 (ORAL)

Audio-Visual Question Answering (AVQA) PyTorch code accompanies our CVPR 2022 paper: Learning to Answer Questions in Dynamic Audio-Visual Scenarios (O

44 Dec 23, 2022
Audio pitch-shifting & re-sampling utility, based on the EMU SP-1200

Pitcher.py Free & OS emulation of the SP-12 & SP-1200 signal chain (now with GUI) Pitch shift / bitcrush / resample audio files Written and tested in

morgan 13 Oct 03, 2022
Bot Music Pintar. Created by Rio

🎶 Rio Music 🎶 Kalo Fork Star Ya Bang Hehehe Requirements 📝 FFmpeg NodeJS nodesource.com Python 3.8+ or 3.7 PyTgCalls Generate String Using Replit ⤵

RioProjectX 7 Jun 15, 2022
Python game programming in Jupyter notebooks.

Jupylet Jupylet is a Python library for programming 2D and 3D games, graphics, music and sound synthesizers, interactively in a Jupyter notebook. It i

Nir Aides 178 Dec 09, 2022
Muzic: Music Understanding and Generation with Artificial Intelligence

Muzic is a research project on AI music that empowers music understanding and generation with deep learning and artificial intelligence.

Microsoft 2.6k Dec 30, 2022
Code for paper 'Audio-Driven Emotional Video Portraits'.

Audio-Driven Emotional Video Portraits [CVPR2021] Xinya Ji, Zhou Hang, Kaisiyuan Wang, Wayne Wu, Chen Change Loy, Xun Cao, Feng Xu [Project] [Paper] G

197 Dec 31, 2022
Python tools for the corpus analysis of popular music.

CATCHY Corpus Analysis Tools for Computational Hook discovery Python tools for the corpus analysis of popular music recordings. The tools can be used

Jan VB 20 Aug 20, 2022
music library manager and MusicBrainz tagger

beets Beets is the media library management system for obsessive music geeks. The purpose of beets is to get your music collection right once and for

beetbox 11.3k Dec 31, 2022
Audio2midi - Automatic Audio-to-symbolic Arrangement

Automatic Audio-to-symbolic Arrangement This is the repository of the project "A

Ziyu Wang 24 Dec 05, 2022
This is a realtime voice translator program which gets input from user at any language and converts it to the desired language that the user asks

This is a realtime voice translator program which gets input from user at any language and converts it to the desired language that the user asks ...

Mohan Ram S 1 Dec 30, 2021
SinGlow: Generative Flow for SVS tasks in Tensorflow 2

SinGlow is a part of my Singing voice synthesis system. It can extract features of sound, particularly songs and musics. Then we can use these features (or perfect encoding) for feature migrating tas

Haobo Yang 8 Aug 22, 2022
Real-time audio visualizations (spectrum, spectrogram, etc.)

Friture Friture is an application to visualize and analyze live audio data in real-time. Friture displays audio data in several widgets, such as a sco

Timothée Lecomte 700 Dec 31, 2022
The venturimeter works on the principle of Bernoulli's equation, i.e., the pressure decreases as the velocity increases.

The venturimeter works on the principle of Bernoulli's equation, i.e., the pressure decreases as the velocity increases. The cross-section of the throat is less than the cross-section of the inlet pi

Shankar Mahadevan L 1 Dec 03, 2021
XA Music Player - Telegram Music Bot

XA Music Player Requirements 📝 FFmpeg (Latest) NodeJS nodesource.com (NodeJS 17+) Python (3.10+) PyTgCalls (Lastest) MongoDB (3.12.1) 2nd Telegram Ac

RexAshh 3 Jun 30, 2022
Sparse Beta-Divergence Tensor Factorization Library

NTFLib Sparse Beta-Divergence Tensor Factorization Library Based off of this beta-NTF project this library is specially-built to handle tensors where

Stitch Fix Technology 46 Jan 08, 2022
Audio book player for senior visually impaired.

PI Zero W Audio Book Motivation and requirements My dad is practically blind and at 80 years has trouble hearing and operating tiny or more complicate

Andrej Hosna 29 Dec 25, 2022
Improved Python UI to convert Youtube URL to .mp3 file.

YT-MP3 Improved Python UI to convert Youtube URL to .mp3 file. How to use? Just run python3 main.py Enter the URL of the video Enter the PATH of where

8 Jun 19, 2022
A voice control utility for Spotify

Spotify Voice Control A voice control utility for Spotify · Report Bug · Request

Shoubhit Dash 27 Jan 01, 2023
A rofi-blocks script that searches youtube and plays the selected audio on mpv.

rofi-ytm A rofi-blocks script that searches youtube and plays the selected audio on mpv. To use the script, run the following command rofi -modi block

Cliford 26 Dec 21, 2022