Implementation of "Slow-Fast Auditory Streams for Audio Recognition, ICASSP, 2021" in PyTorch

Overview

Auditory Slow-Fast

This repository implements the model proposed in the paper:

Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, Dima Damen, Slow-Fast Auditory Streams for Audio Recognition, ICASSP, 2021

Project's webpage

arXiv paper

Citing

When using this code, kindly reference:

@ARTICLE{Kazakos2021SlowFastAuditory,
   title={Slow-Fast Auditory Streams For Audio Recognition},
   author={Kazakos, Evangelos and Nagrani, Arsha and Zisserman, Andrew and Damen, Dima},
           journal   = {CoRR},
           volume    = {abs/2103.03516},
           year      = {2021},
           ee        = {https://arxiv.org/abs/2103.03516},
}

Pretrained models

You can download our pretrained models on VGG-Sound and EPIC-KITCHENS-100:

  • Slow-Fast (EPIC-KITCHENS-100) link
  • Slow (EPIC-KITCHENS-100) link
  • Fast (EPIC-KITCHENS-100) link
  • Slow-Fast (VGG-Sound) link
  • Slow (VGG-Sound) link
  • Fast (VGG-Sound) link

Preparation

  • Requirements:
    • PyTorch 1.7.1
    • librosa: conda install -c conda-forge librosa
    • h5py: conda install h5py
    • wandb: pip install wandb
    • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
    • simplejson: pip install simplejson
    • psutil: pip install psutil
    • tensorboard: pip install tensorboard
  • Add this repository to $PYTHONPATH.
export PYTHONPATH=/path/to/auditory-slow-fast/slowfast:$PYTHONPATH
  • VGG-Sound:
    1. Download the audio. For instructions see here
    2. Download train.pkl (link) and test.pkl (link). I converted the original train.csv and test.csv (found here) to pickle files with column names for easier use
  • EPIC-KITCHENS:
    1. From the annotation repository of EPIC-KITCHENS-100 (link), download: EPIC_100_train.pkl, EPIC_100_validation.pkl, and EPIC_100_test_timestamps.pkl. EPIC_100_train.pkl and EPIC_100_validation.pkl will be used for training/validation, while EPIC_100_test_timestamps.pkl can be used to obtain the scores to submit in the AR challenge.
    2. Download all the videos of EPIC-KITCHENS-100 using the download scripts found here, where you can also find detailed instructions on using the scripts.
    3. Extract audio from the videos by running:
    python audio_extraction/extract_audio.py /path/to/videos /output/path 
    
    1. Save audio in HDF5 format by running:
    python audio_extraction/wav_to_hdf5.py /path/to/audio /output/hdf5/EPIC-KITCHENS-100_audio.hdf5
    

Training/validation on EPIC-KITCHENS-100

To train the model run (fine-tuning from VGG-Sound pretrained model):

python tools/run_net.py --cfg configs/EPIC-KITCHENS/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/output_dir EPICKITCHENS.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 
EPICKITCHENS.ANNOTATIONS_DIR /path/to/annotations TRAIN.CHECKPOINT_FILE_PATH /path/to/VGG-Sound/pretrained/model

To train from scratch remove TRAIN.CHECKPOINT_FILE_PATH /path/to/VGG-Sound/pretrained/model.

You can also train the individual streams. For example, for training Slow run:

python tools/run_net.py --cfg configs/EPIC-KITCHENS/SLOW_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/output_dir EPICKITCHENS.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 
EPICKITCHENS.ANNOTATIONS_DIR /path/to/annotations TRAIN.CHECKPOINT_FILE_PATH /path/to/VGG-Sound/pretrained/model

To validate the model run:

python tools/run_net.py --cfg configs/EPIC-KITCHENS/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/experiment_dir EPICKITCHENS.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 
EPICKITCHENS.ANNOTATIONS_DIR /path/to/annotations TRAIN.ENABLE False TEST.ENABLE True 
TEST.CHECKPOINT_FILE_PATH /path/to/experiment_dir/checkpoints/checkpoint_best.pyth

To obtain scores on the test set run:

python tools/run_net.py --cfg configs/EPIC-KITCHENS/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/experiment_dir EPICKITCHENS.AUDIO_DATA_FILE /path/to/EPIC-KITCHENS-100_audio.hdf5 
EPICKITCHENS.ANNOTATIONS_DIR /path/to/annotations TRAIN.ENABLE False TEST.ENABLE True 
TEST.CHECKPOINT_FILE_PATH /path/to/experiment_dir/checkpoints/checkpoint_best.pyth 
EPICKITCHENS.TEST_LIST EPIC_100_test_timestamps.pkl EPICKITCHENS.TEST_SPLIT test

Training/validation on VGG-Sound

To train the model run:

python tools/run_net.py --cfg configs/VGG-Sound/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/output_dir VGGSOUND.AUDIO_DATA_DIR /path/to/dataset 
VGGSOUND.ANNOTATIONS_DIR /path/to/annotations 

To validate the model run:

python tools/run_net.py --cfg configs/VGG-Sound/SLOWFAST_R50.yaml NUM_GPUS num_gpus 
OUTPUT_DIR /path/to/experiment_dir VGGSOUND.AUDIO_DATA_DIR /path/to/dataset 
VGGSOUND.ANNOTATIONS_DIR /path/to/annotations TRAIN.ENABLE False TEST.ENABLE True 
TEST.CHECKPOINT_FILE_PATH /path/to/experiment_dir/checkpoints/checkpoint_best.pyth

License

The code is published under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, found here.

Owner
Evangelos Kazakos
Evangelos Kazakos
Audio augmentations library for PyTorch for audio in the time-domain

Audio augmentations library for PyTorch for audio in the time-domain, with support for stochastic data augmentations as used often in self-supervised / contrastive learning.

Janne 166 Jan 08, 2023
MelGAN test on audio decoding

Official repository for the paper MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis The original work URL: https://github.com

Jurio 1 Apr 29, 2022
C++ library for audio and music analysis, description and synthesis, including Python bindings

Essentia Essentia is an open-source C++ library for audio analysis and audio-based music information retrieval released under the Affero GPL license.

Music Technology Group - Universitat Pompeu Fabra 2.3k Jan 03, 2023
LibXtract is a simple, portable, lightweight library of audio feature extraction functions.

LibXtract LibXtract is a simple, portable, lightweight library of audio feature extraction functions. The purpose of the library is to provide a relat

Jamie Bullock 215 Nov 16, 2022
The official repository for Audio ALBERT

AALBERT Here is also the official repository of AALBERT, which is Pytorch lightning reimplementation of the paper, Audio ALBERT: A Lite Bert for Self-

pohan 55 Dec 11, 2022
Algorithmic Multi-Instrumental MIDI Continuation Implementation

Matchmaker Algorithmic Multi-Instrumental MIDI Continuation Implementation Taming large-scale MIDI datasets with algorithms This is a WIP so please ch

Alex 2 Mar 11, 2022
A Python library and tools AUCTUS A6 based radios.

A Python library and tools AUCTUS A6 based radios.

Jonathan Hart 6 Nov 23, 2022
Scalable audio processing framework written in Python with a RESTful API

TimeSide : scalable audio processing framework and server written in Python TimeSide is a python framework enabling low and high level audio analysis,

Parisson 340 Jan 04, 2023
Scrap electronic music charts into CSV files

musiccharts A small python script to scrap (electronic) music charts into directories with csv files. Installation Download MusicCharts.exe Run MusicC

Dustin Scharf 1 May 11, 2022
A Python wrapper around the Soundcloud API

soundcloud-python A friendly wrapper around the Soundcloud API. Installation To install soundcloud-python, simply: pip install soundcloud Or if you'r

SoundCloud 84 Dec 31, 2022
Convert complex chord names to midi notes

ezchord Simple python script that can convert complex chord names to midi notes Prerequisites pip install midiutil Usage ./ezchord.py Dmin7 G7 C timi

Alex Zhang 2 Dec 20, 2022
Codes for "Efficient Long-Range Attention Network for Image Super-resolution"

ELAN Codes for "Efficient Long-Range Attention Network for Image Super-resolution", arxiv link. Dependencies & Installation Please refer to the follow

xindong zhang 124 Dec 22, 2022
Python implementation of the Short Term Objective Intelligibility measure

Python implementation of STOI Implementation of the classical and extended Short Term Objective Intelligibility measures Intelligibility measure which

Pariente Manuel 250 Dec 21, 2022
Desktop music recognition application for windows

MusicRecognizer Music recognition application for windows You can choose from which of the devices the recording will be made. If you choose speakers,

Nikita Merzlyakov 28 Dec 13, 2022
Audio fingerprinting and recognition in Python

dejavu Audio fingerprinting and recognition algorithm implemented in Python, see the explanation here: How it works Dejavu can memorize audio by liste

Will Drevo 6k Jan 06, 2023
Vixtify - Python Controlled Music Player

Strumm Sound Playlist : Click me to listen Welcome to GitHub Pages You can use the editor on GitHub to maintain and preview the content for your websi

Vicky Kumar 2 Feb 03, 2022
Extract the songs from your osu! libary into proper mp3 form, complete with metadata and album art!

osu-Extract Extract the songs from your osu! libary into proper mp3 form, complete with metadata and album art! Requirements python3 mutagen pillow Us

William Carter 2 Mar 09, 2022
This is a realtime voice translator program which gets input from user at any language and converts it to the desired language that the user asks

This is a realtime voice translator program which gets input from user at any language and converts it to the desired language that the user asks ...

Mohan Ram S 1 Dec 30, 2021
:speech_balloon: SpeechPy - A Library for Speech Processing and Recognition: http://speechpy.readthedocs.io/en/latest/

SpeechPy Official Project Documentation Table of Contents Documentation Which Python versions are supported Citation How to Install? Local Installatio

Amirsina Torfi 870 Dec 27, 2022
Reading list for research topics in sound event detection

Sound event detection aims at processing the continuous acoustic signal and converting it into symbolic descriptions of the corresponding sound events present at the auditory scene.

Soham 64 Jan 05, 2023