vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models

Overview

python   MIT license  

vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models, such as:

  • T-test: verify if mean of distribution is zero;
  • Kupiec Test (1995): verify if the number of violations is consistent with the violations predicted by the model;
  • Berkowitz Test (2001): verify if conditional distributions of returns "GARCH(1,1)" used in the VaR Model is adherent to the data. In this specific test, we do not observe the whole data, only the tail;
  • Christoffersen and Pelletier Test (2004): also known as Duration Test. Duration is time between violations of VaR. It tests if VaR Model has quickly response to market movements by consequence the violations do not form volatility clusters. This test verifies if violations has no memory i.e. should be independent.

Installation

Using pip

You can install using the pip package manager by running:

pip install vartests

Alternatively, you could install the latest version directly from Github:

pip install https://github.com/rafa-rod/vartests/archive/refs/heads/main.zip

Why vartests is important?

After VaR calculation, it is necessary to perform statistic tests to evaluate the VaR Models. To select the best model, they should be validated by backtests.

Example

First of all, lets read a file with a PnL (distribution of profit and loss) of a portfolio in which also contains the VaR and its violations.

import pandas as pd

data = pd.read_excel("Example.xlsx", index_col=0)
violations = data["Violations"]
pnl = data["PnL"] 
data.sample(5)

The dataframe looks like:

' |     PnL       |      VaR        |   Violations |
  | -889.003707   | -2554.503872    |            0 |
  | -2554.503872  | -2202.221691    |            1 | 
  | -887.527423   | -2193.692570    |            0 |  
  | -274.344126   | -2160.290746    |            0 | 
  | 1376.018638   | -5719.833100    |            0 |'

Not all tests should be applied to the VaR Model. Some of them its applied whether the VaR Model has assumption of zero mean or follow a specific distribution. So you should test the data:

import vartests

vartests.zero_mean_test(pnl.values, conf_level=0.95)

This assumption is commom used in parametric VaR like EWMA and GARCH Models. Besides that, is necessary check assumption of distribution. So you should test with Berkowitz (2001):

import vartests

vartests.berkowtiz_tail_test(pnl, volatility_window=252, var_conf_level=0.99, conf_level=0.95)

The following tests should be used to any kind of VaR Models.

import vartests

vartests.kupiec_test(violations, var_conf_level=0.99, conf_level=0.95)

vartests.duration_test(violations, conf_level=0.95)

If you want to see the failure ratio of the VaR Model, just type:

import vartests

vartests.failure_rate(violations)
Owner
RAFAEL RODRIGUES
Quantitative Finance, data science, optimisation, Python, julia, R.
RAFAEL RODRIGUES
Used for data processing in machine learning, and help us to construct ML model more easily from scratch

Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.

ShawnWang 0 Jul 05, 2022
BigDL - Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems

Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems.

Vo Cong Thanh 1 Jan 06, 2022
Integrate bus data from a variety of sources (batch processing and real time processing).

Purpose: This is integrate bus data from a variety of sources such as: csv, json api, sensor data ... into Relational Database (batch processing and r

1 Nov 25, 2021
The Spark Challenge Student Check-In/Out Tracking Script

The Spark Challenge Student Check-In/Out Tracking Script This Python Script uses the Student ID Database to match the entries with the ID Card Swipe a

1 Dec 09, 2021
Python Practicum - prepare for your Data Science interview or get a refresher.

Python-Practicum Python Practicum - prepare for your Data Science interview or get a refresher. Data Data visualization using data on births from the

Jovan Trajceski 1 Jul 27, 2021
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
A Python package for modular causal inference analysis and model evaluations

Causal Inference 360 A Python package for inferring causal effects from observational data. Description Causal inference analysis enables estimating t

International Business Machines 506 Dec 19, 2022
Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle.

2019-indian-election-eda Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle. This project is a part of the Cou

Souradeep Banerjee 5 Oct 10, 2022
A computer algebra system written in pure Python

SymPy See the AUTHORS file for the list of authors. And many more people helped on the SymPy mailing list, reported bugs, helped organize SymPy's part

SymPy 9.9k Dec 31, 2022
Tokyo 2020 Paralympics, Analytics

Tokyo 2020 Paralympics, Analytics Thanks for checking out my app! It was built entirely using matplotlib and Tokyo 2020 Paralympics data. This applica

Petro Ivaniuk 1 Nov 18, 2021
Intake is a lightweight package for finding, investigating, loading and disseminating data.

Intake: A general interface for loading data Intake is a lightweight set of tools for loading and sharing data in data science projects. Intake helps

Intake 851 Jan 01, 2023
PyEmits, a python package for easy manipulation in time-series data.

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Thompson 5 Sep 23, 2022
This tool parses log data and allows to define analysis pipelines for anomaly detection.

logdata-anomaly-miner This tool parses log data and allows to define analysis pipelines for anomaly detection. It was designed to run the analysis wit

AECID 32 Nov 27, 2022
Picka: A Python module for data generation and randomization.

Picka: A Python module for data generation and randomization. Author: Anthony Long Version: 1.0.1 - Fixed the broken image stuff. Whoops What is Picka

Anthony 108 Nov 30, 2021
Python Implementation of Scalable In-Memory Updatable Bitmap Indexing

PyUpBit CS490 Large Scale Data Analytics — Implementation of Updatable Compressed Bitmap Indexing Paper Table of Contents About The Project Usage Cont

Hyeong Kyun (Daniel) Park 1 Jun 28, 2022
Time ranges with python

timeranges Time ranges. Read the Docs Installation pip timeranges is available on pip: pip install timeranges GitHub You can also install the latest v

Micael Jarniac 2 Sep 01, 2022
Elasticsearch tool for easily collecting and batch inserting Python data and pandas DataFrames

ElasticBatch Elasticsearch buffer for collecting and batch inserting Python data and pandas DataFrames Overview ElasticBatch makes it easy to efficien

Dan Kaslovsky 21 Mar 16, 2022
A program that uses an API and a AI model to get info of sotcks

Stock-Market-AI-Analysis I dont mind anyone using this code but please give me credit A program that uses an API and a AI model to get info of stocks

1 Dec 17, 2021
In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift.

ETL Pipeline for AWS Project Description In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift. The data is loaded from S3 t

Mobeen Ahmed 1 Nov 01, 2021
Retail-Sim is python package to easily create synthetic dataset of retaile store.

Retailer's Sale Data Simulation Retail-Sim is python package to easily create synthetic dataset of retaile store. Simulation Model Simulator consists

Corca AI 7 Sep 30, 2022