Semi-Automated Data Processing

Overview

Semi-Automated Data Processing

Preparing data for model learning is one of the most important steps in any project—and traditionally, one of the most time consuming. Data Analysis plays a very important role in the entire Data Science Workflow. In fact, this takes most of the time of the Data science Workflow. There’s a nice quote (not sure who said it)According to Wikipedia, In statistics, exploratory data analysis (EDA) is an approach to analyzing data sets to summarize their main characteristics, often with visual methods. A statistical model can be used or not, but primarily EDA is for seeing what the data can tell us beyond the formal modeling or hypothesis testing task. Exploratory data analysis was promoted by John Tukey to encourage statisticians to explore the data, and possibly formulate hypotheses that could lead to new data collection and experiments.**“In Data Science, 80% of time spent prepare data, 20% of time spent complain about need for prepare data.”*

This projects handles the task with minimal user interaction by analyzing your data and identifying fixes, screening out fields that are problematic or not likely to be useful, deriving new attributes when appropriate, and improving performance through intelligent screening techniques. You can use the project in semi-interactive fashion, previewing the changes before they are made and accept or reject them as you want.

This project cover the 3 steps in any project workflow, comes before the model training:
1) Exploratory data analysis
2) Feature engineering
3) Feature selection


All these steps has to be carried out by the user by calling the several functions as follows:

1) identify_feature(data)=
This function identifies the categorical, continuous numerical and discrete numerical features in the datset. It also identifies datetime feature and extracts the relevant info from it.

Input:
data=Dataset

Output:
df=Dataset
data_cont_num_feature= List of features names associated containing continuous numerical values
data_dis_num_feature=List of features names associated containing discrete numerical values
data_cat_feature=List of features names associated containing categorical values
dt_feature=List of features names associated containing datetime values

2) plot_nan_feature(data, continuous_features, discrete_features, categorical_features,dependent_var)=
It identifies the missing values in the dataset and visualize them their impact on dependent feature.

Input:
data=Dataset
continuous_features= List of features names associated containing continuous numerical values
discrete_features=List of features names associated containing discrete numerical values
categorical_features=List of features names associated containing categorical values
dependent_var= Dependent feature name in string format

Output:
df= Dataset
nan_features= List of feature names containing NaN values

3) visualize_imputation_impact(data,continuous_features, discrete_features, categorical_features,nan_features,dependent_var):
The function visualizes the impact of different NaN value impution on the distribution of values the feature.

Input:
data=Dataset
continuous_features= List of features names associated containing continuous numerical values
discrete_features=List of features names associated containing discrete numerical values
categorical_features=List of features names associated containing categorical values
nan_features= List of feature names containing NaN values
dependent_var= Dependent feature name in string format

Output:
None

4) nan_imputation(data,mean_feature,median_feature,mode_feature,random_feature,new_category):
The function imputes the NaN values in the feature as per the user input.

Input:
data=Dataset
mean_feature= List of feature names in which we have to carry out mean_imputation
median_feature=List of feature names in which we have to carry out median_imputation
mode_feature=List of feature names in which we have to carry out mode_imputation
random_feature=List of feature names in which we have to carry out random_imputation
new_category=List of feature names in which we we create a new category for the NaN values

Output:
None

5) cross_visualization(data,continuous_features,discrete_features, categorical_features,dt_features):
The function visualise the relationship between the different independent features.

Input:
df=Dataset
data_cont_num_feature= List of features names associated containing continuous numerical values
data_dis_num_feature=List of features names associated containing discrete numerical values
data_cat_feature=List of features names associated containing categorical values
dt_feature=List of features names associated containing datetime values

Output:
continuous_features2=List of features names associated containing continuous numerical values, except the dependent feature

6) dependent_independent_visualization(data,continuous_features,discrete_features, categorical_features,dt_features,dependent_feature):
The function visualise the relationship between the different independent features.

Input:
data_cont_num_feature= List of features names associated containing continuous numerical values
data_dis_num_feature=List of features names associated containing discrete numerical values
data_cat_feature=List of features names associated containing categorical values
dt_feature=List of features names associated containing datetime values
dependent_var= Dependent feature name in string format

Output:
None

7) outlier_removal(data,continuous_features,discrete_features,dependent_var,dependent_var_type,action):
The function visualizes the outlliers using the boxplot and removes them.

Input:
data=Dataset
continuous_features= List of features names associated containing continuous numerical values
discrete_features=List of features names associated containing discrete numerical values
dependent_var= Dependent feature name in string format
dependent_var_type= Contain string tells if the problem is regression (than use 'Regression') or else
action= Give input as 'remove' to delete the rows associated with the outliers

Output:
df=Dataset

8) transformation_visualization(data,continuous_features,discrete_features,dependent_feature):
The function visualize the feature after performing various transormation techniques.

Input:
data=Dataset
continuous_features= List of features names associated containing continuous numerical values
discrete_features=List of features names associated containing discrete numerical values
dependent_feature= Dependent feature name in string format

Output:
None

9) feature_transformation(train_data,continuous_features,discrete_features,transformation,dependent_feature):
The function performing the feature transormation technique as per the user input.

Input:
train_data=Training dataset
continuous_features= List of features names associated containing continuous numerical values
discrete_features=List of features names associated containing discrete numerical values
transformation=Type of transformation: none=No transformation, log=Log Transformation, sqrt= Square root Transformation, reciprocal= Reciprocal Transformation, exp= Exponential Transformation, boxcox=Boxcox Transformation
dependent_feature= Dependent feature name in string format

Output:
X_data=Training dataset

10) categorical_transformation(train_data,categorical_encoding):
This function transforms the categorical featres in the numerical ones using encoding techniques.

Input:
train_data=Training dataset
categorical_encoding={'one_hot_encoding':[],'frequency_encoding':[],'mean_encoding':[],'target_guided_ordinal_encoding':{}}

Output:
X_data=Training dataset

11a) feature_selection(Xtrain,ytrain, threshold, data_type, filter_type):
This function performs the feature selection based on the dependent and independent features in train dataset.

Input:
Xtrain=Training dataset
ytrain=dependent data in training dataset
threshold= Threshold for the correlation
{'in_num_out_num':{'linear':['pearson'],'non-linear':['spearman']},
'in_num_out_cat':{'linear':['ANOVA'],'non-linear':['kendall']},
'in_cat_out_num':{'linear':['ANOVA'],'non-linear':['kendall']},
'in_cat_out_cat':{'chi_square_test':True,'mutual_info':True},}
data_type= Data linear or non-linearly dependent on the output label
filter_type= If input data is numerical and output is numerical then --'in_num_out_num' as shown in the above dictionary

Output:
Xtrain= Training dataset
feature_df= Dataframe containig features with their pvalue

11b) feature_selection(Xtrain,ytrain,Xtest,ytest, threshold, data_type, filter_type):
This function performs the feature selection based on the dependent and independent features in train dataset.

Input:
Xtrain=Training dataset
ytrain=dependent data in training dataset
Xtest=Test dataset
ytest=dependent data in test dataset
threshold= Threshold for the correlation
{'in_num_out_num':{'linear':['pearson'],'non-linear':['spearman']},
'in_num_out_cat':{'linear':['ANOVA'],'non-linear':['kendall']},
'in_cat_out_num':{'linear':['ANOVA'],'non-linear':['kendall']},
'in_cat_out_cat':{'chi_square_test':True,'mutual_info':True},}
data_type= Data linear or non-linearly dependent on the output label
filter_type= If input data is numerical and output is numerical then --'in_num_out_num' as shown in the above dictionary

Output:
Xtrain= Training dataset
Xtest= Test dataset
feature_df= Dataframe containig features with their pvalue

12) convert_dtype(data,categorical_features):
This function converts the categorical fetaures containing the numeric values but presented as categorical into the int format.

Input:
data= Dataset
categorical_features=List of features names associated containing categorical values

Output:
df=Dataset

Note:
Use same paramters for both train and test dataset for better accuracy


We have implemented a bike sharing project to describe how the functions can be used for both the classification and regression problem statement.

Owner
Arun Singh Babal
Engineer | Data Science Enthusiasts | Machine Learning | Deep Learning | Advanced Computer Vision.
Arun Singh Babal
INF42 - Topological Data Analysis

TDA INF421(Conception et analyse d'algorithmes) Projet : Topological Data Analysis SphereMin Etant donné un nuage des points, ce programme contient de

2 Jan 07, 2022
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023
Data cleaning tools for Business analysis

Datacleaning datacleaning tools for Business analysis This program is made for Vicky's work. You can use it, too. 数据清洗 该数据清洗工具是为了商业分析 这个程序是为了Vicky的工作而

Lin Jian 3 Nov 16, 2021
Automatic earthquake catalog building workflow: EQTransformer + Siamese EQTransformer + PickNet + REAL + HypoInverse

Automatic regional-scale earthquake catalog building workflow: EQTransformer + Siamese EQTransforme

Xiao Zhuowei 9 Nov 27, 2022
Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Débora Mendes de Azevedo 1 Feb 03, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
Evidence enables analysts to deliver a polished business intelligence system using SQL and markdown.

Evidence enables analysts to deliver a polished business intelligence system using SQL and markdown

915 Dec 26, 2022
Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation

Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation Overview Consider the scenario in which advertisement

Manuel Bressan 2 Nov 18, 2021
Analyzing Earth Observation (EO) data is complex and solutions often require custom tailored algorithms.

eo-grow Earth observation framework for scaled-up processing in Python. Analyzing Earth Observation (EO) data is complex and solutions often require c

Sentinel Hub 18 Dec 23, 2022
Python Project on Pro Data Analysis Track

Udacity-BikeShare-Project: Python Project on Pro Data Analysis Track Basic Data Exploration with pandas on Bikeshare Data Basic Udacity project using

Belal Mohammed 0 Nov 10, 2021
Flexible HDF5 saving/loading and other data science tools from the University of Chicago

deepdish Flexible HDF5 saving/loading and other data science tools from the University of Chicago. This repository also host a Deep Learning blog: htt

UChicago - Department of Computer Science 255 Dec 10, 2022
Hydrogen (or other pure gas phase species) depressurization calculations

HydDown Hydrogen (or other pure gas phase species) depressurization calculations This code is published under an MIT license. Install as simple as: pi

Anders Andreasen 13 Nov 26, 2022
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Damien Farrell 81 Dec 26, 2022
Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production

Numerics Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production Use procedure: Initialise a new i

George Whittle 1 Nov 13, 2021
An easy-to-use feature store

A feature store is a data storage system for data science and machine-learning. It can store raw data and also transformed features, which can be fed straight into an ML model or training script.

ByteHub AI 48 Dec 09, 2022
Integrate bus data from a variety of sources (batch processing and real time processing).

Purpose: This is integrate bus data from a variety of sources such as: csv, json api, sensor data ... into Relational Database (batch processing and r

1 Nov 25, 2021
Office365 (Microsoft365) audit log analysis tool

Office365 (Microsoft365) audit log analysis tool The header describes it all WHY?? The first line of code was written long time before other colleague

Anatoly 1 Jul 27, 2022
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
WithPipe is a simple utility for functional piping in Python.

A utility for functional piping in Python that allows you to access any function in any scope as a partial.

Michael Milton 1 Oct 26, 2021
An ETL framework + Monitoring UI/API (experimental project for learning purposes)

Fastlane An ETL framework for building pipelines, and Flask based web API/UI for monitoring pipelines. Project structure fastlane |- fastlane: (ETL fr

Dan Katz 2 Jan 06, 2022