Code for papers "Generation-Augmented Retrieval for Open-Domain Question Answering" and "Reader-Guided Passage Reranking for Open-Domain Question Answering", ACL 2021

Related tags

Text Data & NLPGAR
Overview

This repo provides the code of the following papers:

(GAR) "Generation-Augmented Retrieval for Open-domain Question Answering", ACL 2021

(RIDER) "Reader-Guided Passage Reranking for Open-Domain Question Answering", Findings of ACL 2021.

GAR augments a question with relevant contexts generated by seq2seq learning, with the question as input and target outputs such as the answer, the sentence where the answer belongs to, and the title of a passage that contains the answer. With the generated contexts appended to the original questions, GAR achieves state-of-the-art OpenQA performance with a simple BM25 retriever.

RIDER is a simple and effective passage reranker, which reranks retrieved passages by reader predictions without any training. RIDER achieves 10~20 gains in top-1 retrieval accuracy, 1~4 gains in Exact Match (EM), and even outperforms supervised transformer-based rerankers.

Code

Generation

The codebase of seq2seq models is based on (old) huggingface/transformers (version==2.11.0) examples.

See train_gen.yml for the package requirements and example commands to run the models.

train_generator.py: training of seq2seq models.

conf.py: configurations for train_generator.py. There are some default parameters but it might be easier to set e.g., --data_dir and --output_dir directly.

test_generator.py: test of seq2seq models (if not already done in train_generator.py).

Retrieval

We use pyserini for BM25 retrieval. Please refer to its document for indexing and searching wiki passages (wiki passages can be downloaded here). Alternatively, you may take a look at its effort to reproduce DPR results, which gives more detailed instructions and incorporates the passage-level span voting in GAR.

Reranking

Please see the instructions in rider/rider.py.

Reading

We experiment with one extractive reader and one generative reader.

For the extractive reader, we take the one used by dense passage retrieval. Please refer to DPR for more details.

For the generative reader, we reuse the codebase in the generation stage above, with [question; top-retrieved passages] as the source input and one ground-truth answer as the target output. Example script is provided in train_gen.yml.

Data

Please refer to DPR for dataset downloading.

For seq2seq learning, use {train/val/test}.source as the input and {train/val/test}.target as the output, where each line is one example.

In the same folder, save the list of ground-truth answers with name {val/test}.target.json if you want to evaluate EM during training.

Cite

Please use the following bibtex to cite our papers.

@article{mao2020generation,
  title={Generation-augmented retrieval for open-domain question answering},
  author={Mao, Yuning and He, Pengcheng and Liu, Xiaodong and Shen, Yelong and Gao, Jianfeng and Han, Jiawei and Chen, Weizhu},
  journal={arXiv preprint arXiv:2009.08553},
  year={2020}
}

@article{mao2021reader,
  title={Reader-Guided Passage Reranking for Open-Domain Question Answering},
  author={Mao, Yuning and He, Pengcheng and Liu, Xiaodong and Shen, Yelong and Gao, Jianfeng and Han, Jiawei and Chen, Weizhu},
  journal={arXiv preprint arXiv:2101.00294}
}

Owner
morning
NLP | ML | Data Mining
morning
2021海华AI挑战赛·中文阅读理解·技术组·第三名

文字是人类用以记录和表达的最基本工具,也是信息传播的重要媒介。透过文字与符号,我们可以追寻人类文明的起源,可以传播知识与经验,读懂文字是认识与了解的第一步。对于人工智能而言,它的核心问题之一就是认知,而认知的核心则是语义理解。

21 Dec 26, 2022
Japanese synonym library

chikkarpy chikkarpyはchikkarのPython版です。 chikkarpy is a Python version of chikkar. chikkarpy は Sudachi 同義語辞書を利用し、SudachiPyの出力に同義語展開を追加するために開発されたライブラリです。

Works Applications 48 Dec 14, 2022
🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy

spacy-transformers: Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy This package provides spaCy components and architectures to use tr

Explosion 1.2k Jan 08, 2023
This project consists of data analysis and data visualization (done using python)of all IPL seasons from 2008 to 2019 and answering the most asked questions about the IPL.

IPL-data-analysis This project consists of data analysis and data visualization of all IPL seasons from 2008 to 2019 and answering the most asked ques

Sivateja A T 2 Feb 08, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Approximately Correct Machine Intelligence (ACMI) Lab 21 Nov 24, 2022
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022
Milaan Parmar / Милан пармар / _米兰 帕尔马 170 Dec 13, 2022
Fast, DB Backed pretrained word embeddings for natural language processing.

Embeddings Embeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning. Instead of lo

Victor Zhong 212 Nov 21, 2022
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
A complete NLP guideline for enthusiasts

NLP-NINJA A complete guide for Natural Language Processing in Python Table of Contents S.No. Topic Level Meaning 1 Tokenization 🤍 Beginner 2 Stemming

MAINAK CHAUDHURI 22 Dec 27, 2022
Model parallel transformers in JAX and Haiku

Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu

Ben Wang 4.9k Jan 04, 2023
Simple text to phones converter for multiple languages

Phonemizer -- foʊnmaɪzɚ The phonemizer allows simple phonemization of words and texts in many languages. Provides both the phonemize command-line tool

CoML 762 Dec 29, 2022
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
Translate U is capable of translating the text present in an image from one language to the other.

Translate U is capable of translating the text present in an image from one language to the other. The app uses OCR and Google translate to identify and translate across 80+ languages.

Neelanjan Manna 1 Dec 22, 2021
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection"

Splinter This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection", to

Ori Ram 88 Dec 31, 2022
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop

94 Dec 21, 2022
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022