This is a library for simulate probability theory problems specialy conditional probability

Related tags

Miscellaneouspprobs
Overview

Introduction

This is a library for simulating probability theory problems, especially conditional probability. It is also useful to create a custom single or joint distribution with a specific PMF or PDF to get a probability table and generate data based on a probability function.

How to install?

pip install pprobs

Probability Simulator

It simulates probability theory problems, especially conditional probability.

Example 1

We want to get some information by defining some events.

  • P(A) = 0.3
  • P(B) = 0.2
  • P(A^B) = 0.1
  • A and B are dependent
  • P(A+B) = ? , P(A|B) = ?
from pprobs.simulation import Simulator

space = Simulator()

space.add_event('A', 0.3)
space.add_event('B', 0.2)
space.add_event('A^B', 0.1)

prob_1 = space.get_prob('A+B') # A+B means union of A and B
prob_2 = space.get_prob('A|B')

print(prob_1, prob_2) # 0.4  0.5

Example 2

In a group of 100 sports car buyers, 40 bought alarm systems, 30 purchased bucket seats, and 20 purchased an alarm system and bucket seats. If a car buyer chosen at random bought an alarm system, what is the probability they also bought bucket seats?

By Statisticshowto

  • P(SEAT) = 0.3
  • P(ALARM) = 0.4
  • P(SEAT ^ ALARM) = 0.2
  • P(SEAT | ALARAM) = ?
from pprobs.simulation import Simulator

space = Simulator()

space.add_event('SEAT', 0.3).add_event('ALARM', 0.4) # We can also add events sequentially in a line (chaining) 
space.add_event('SEAT^ALARM', 0.2) # A^B means intersection of A & B

print(space.get_prob('SEAT|ALARM')) # 0.5

Example 3

Totaly 1% of people have a certain genetic defect.90% of tests for the gene detect the defect (true positives). 9.6% of the tests are false positives. If a person gets a positive test result, what are the odds they actually have the genetic defect?

By Statisticshowto

  • P(GEN_DEF) = 0.01
  • P(POSITIVE|GEN_DEF) = 0.9
  • P(POSITIVE|GEN_DEF!) = 0.096
  • P(GEN_DEF|POSITIVE) = ?
space = Simulator()

space.add_event('GEN_DEF', 0.01)
space.add_event('POSITIVE|GEN_DEF', 0.9) # A|B means A given B
space.add_event('POSITIVE|GEN_DEF!', 0.096) # A! means complement of A

print(space.get_prob('GEN_DEF|POSITIVE')) # 0.0865

Example 4

Bob has an important meeting tomorrow and he has to reach the office on time in the morning. His general mode of transport is by car and on a regular day (no car trouble) the probability that he will reach on time is 0.3. The probability that he might have car trouble is 0.2. If the car runs into trouble he will have to take a train and only 2 trains out of the available 10 trains will get him to the office on time.

By Hackerearth

  • P(ON_TIME|CAR_OK) = 0.3
  • P(ON_TIME|CAR_OK!) = 2/10 => Go by train
  • P(CAR_OK!) = 0.2
  • P(ON_TIME) = ?
space = Simulator()

space.add_event('ON_TIME|CAR_OK', 0.3)
space.add_event('ON_TIME|CAR_OK!', 2/10)
space.add_event('CAR_OK!', 0.2)

prob = space.get_prob('ON_TIME') # Probability of ON_TIME

print(prob) # 0.28

Distribution Simulator

It is useful to create a custom single or joint distribution with a specific PMF or PDF to get a probability table and generate data based on a probability function.

Example 1

Suppose that we have a discrete random variable with a specific PMF. We want to generate many data based on this variable. As you see in the second example 1 has the largest probability and duplicates more and 4 has the smallest probability and duplicates less.

from pprobs.distribution import Discrete

# First 
def pmf(x):
    return 1 / 6

dist = Discrete(pmf, [1, 2, 3, 4, 5, 6]) # The second is the sample space of our PMF

print(dist.generate(15)) # [4, 3, 1, 6, 5, 3, 5, 3, 5, 4, 2, 5, 6, 1, 6]


# Second
def pmf(x):
    return 1 / x

dist = Discrete(pmf, [1, 2, 3, 4])
print(dist.generate(15)) # [1, 2, 1, 1, 1, 4, 3, 1, 1, 3, 2, 4, 1, 2, 2]

Example 2

Suppose that we have a continuous random variable with a specific PDF.

from pprobs.distribution import Continuous

def pdf(x):
  if x > 1:
    return x / x ** 2
  return 0

dist = Continuous(pdf, [1, 6]) # The second is the sample interval of our PDF

print(dist.generate(15)) # [2.206896551724138, 4.103448275862069, ..., 5.655172413793104, 6.0]

Example 3

Suppose that we have a Continuous Joint variable with a specific PDF.

from pprobs.distribution import Joint

def pdf(x, y):
  if x > 1:
    return 1 / (x * y)
  return 0

dist = Joint(pdf, [1, 6], [3, 10]) # The second and third are the intervals of our PDF

print(dist.probability_table(force=20)) # if force gets more, many number will generate

Output:

X/Y x=3.0 X=3.7 ... X=10
X=1.0 0.000 0.000 ... 0.000
... ... ... ... ...
X=6.0 0.055 0.044 ... 0.016
print(dist.get_prob(3.5, 3.5)) # 0.081 is P(X=3.5, Y=3.5)
print(dist.get_prob([1, 6], 4)) # 0.041 is P(Y=4) because X includes its whole domain
print(dist.get_prob(2.1, [1, 4])) # 0.206 is P(X=2.1, Y in [1, 4])

Example 4

Suppose that we have a Discrete Joint variable with a specific PMF.

from pprobs.distribution import Joint

def pmf(x, y):
  if x > 1:
    return 1 / (x * y)
  return 0

dist = Joint(pmf, range(1, 6), range(6, 10)) # The second and third are the sample space of our PMF

print(dist.probability_table()) 

Output:

X/Y Y=6 Y=7 Y=8 Y=9
X=1 0.000000 0.000000 0.000000 0.000000
X=2 0.083333 0.071429 0.062500 0.055556
X=3 0.055556 0.047619 0.041667 0.037037
X=4 0.041667 0.035714 0.031250 0.027778
X=5 0.033333 0.028571 0.025000 0.022222
print(dist.get_prob(2, range(6, 10))) # 0.272 is P(X=2)
print(dist.get_prob(2, 6)) # 0.083 is P(X=2, Y=6)

Thank you if giving a star me on Github. https://github.com/mokar2001

Owner
Mohamadreza Kariminejad
I am interested in AI, Backend Development, and Mathematics.
Mohamadreza Kariminejad
Python library for creating PEG parsers

PyParsing -- A Python Parsing Module Introduction The pyparsing module is an alternative approach to creating and executing simple grammars, vs. the t

Pyparsing 1.7k Jan 03, 2023
An Insurance firm providing tour insurance is facing higher claim frequency

An Insurance firm providing tour insurance is facing higher claim frequency. Data is collected from the past few years. Made a model which predicts the claim status using CART, RF & ANN and compare t

1 Jan 27, 2022
A collection of convenient parsers for Advent of Code problems.

Advent of Code Parsers A collection of convenient Python parsers for Advent of Code problems. Installation pip install aocp Quickstart You can import

Miguel Blanco Marcos 3 Dec 13, 2021
This Curve Editor, written by Jehee Lee in 2015

Splines Abstract This Curve Editor, written by Jehee Lee in 2015, is a freeware. You can use, modify, redistribute the code without restriction. This

Movement Research Lab 8 Mar 11, 2022
Displays Christmas-themed ASCII art

Christmas Color Scripts Displays Christmas-themed ASCII art. This was mainly inspired by DistroTube's Shell Color Scripts Screenshots ASCII Shadow Tex

1 Aug 09, 2022
SECRET SANTA / KRIS KINGLE

SECRET SANTA / KRIS KINGLE Note: Before executing the script, make sure to turn

DEV_FINWIZ 10 Dec 06, 2022
A numbers check python package

A numbers check python package

Fayas Noushad 3 Nov 28, 2021
Proyecto desarrollado para el programa #FutureDevelopers, tabla periódica interactiva.

Tabla_Periodica Proyecto desarrollado para el programa #FutureDevelopers, tabla periódica interactiva. Descripcion primer entregable: Tabla periodica

1 Dec 04, 2021
Todo-backend - Todo backend with python

Todo-backend - Todo backend with python

Julio C. Diaz 1 Jan 07, 2022
Jannik Ramrath 1 Feb 05, 2022
API to summarize input text

summaries API to summarize input text normal run $ docker-compose exec web python -m pytest disable warnings $ docker-compose exec web python -m pytes

Brad 1 Sep 08, 2021
Example teacher bot for deployment to Chai app.

Create and share your own chatbot Here is the code for uploading the popular "Ms Harris (Teacher)" chatbot to the Chai app. You can tweak the config t

Chai 1 Jan 10, 2022
Sabe is a python framework written for easy web server setup.

Sabe is a python framework written for easy web server setup. Sabe, kolay web sunucusu kurulumu için yazılmış bir python çerçevesidir. Öğrenmesi kola

2 Jan 01, 2022
Example python package with pybind11 cpp extension

Developing C++ extension in Python using pybind11 This is a summary of the commands used in the tutorial.

55 Sep 04, 2022
This repository contains completed Python projects

My Python projects This repository contains completed Python projects: 1) Build projects Guide for building projects into executable files 2) Calculat

Igor Yunusov 8 Nov 04, 2021
本仓库整理了腾讯视频、爱奇艺、优酷、哔哩哔哩等视频网站中,能够观看的「豆瓣电影 Top250 榜单」影片。

Where is top 250 movie ? 本仓库整理了腾讯视频、爱奇艺、优酷、哔哩哔哩等视频网站中,能够观看的「豆瓣电影 Top250 榜单」影片,点击 Badge 可跳转至相应的电影首页。

MayanDev 123 Dec 22, 2022
Web app to find your chance of winning at Texas Hold 'Em

poker_mc Web app to find your chance of winning at Texas Hold 'Em A working version of this project is deployed at poker-mc.ue.r.appspot.com. It's run

Aadith Vittala 7 Sep 15, 2021
Set up a sidechain for the XRPL quickly and easily

Sidechain Launch Kit Introduction This directory contains python scripts to tests and explore side chains. This document walks through the steps to se

Xpring Engineering 15 Dec 08, 2022
Make dbt docs and Apache Superset talk to one another

dbt-superset-lineage Make dbt docs and Apache Superset talk to one another Why do I need something like this? Odds are rather high that you use dbt to

Slido 81 Jan 06, 2023
This program tries to book a tennis court slot in either Southwark Park or Tanner Street Park in Southwark, London.

Book tennis courts in London This program tries to book a tennis court slot in either Southwark Park or Tanner Street Park in Southwark, London. Note:

Daniele 1 Jul 25, 2022