This is a library for simulate probability theory problems specialy conditional probability

Related tags

Miscellaneouspprobs
Overview

Introduction

This is a library for simulating probability theory problems, especially conditional probability. It is also useful to create a custom single or joint distribution with a specific PMF or PDF to get a probability table and generate data based on a probability function.

How to install?

pip install pprobs

Probability Simulator

It simulates probability theory problems, especially conditional probability.

Example 1

We want to get some information by defining some events.

  • P(A) = 0.3
  • P(B) = 0.2
  • P(A^B) = 0.1
  • A and B are dependent
  • P(A+B) = ? , P(A|B) = ?
from pprobs.simulation import Simulator

space = Simulator()

space.add_event('A', 0.3)
space.add_event('B', 0.2)
space.add_event('A^B', 0.1)

prob_1 = space.get_prob('A+B') # A+B means union of A and B
prob_2 = space.get_prob('A|B')

print(prob_1, prob_2) # 0.4  0.5

Example 2

In a group of 100 sports car buyers, 40 bought alarm systems, 30 purchased bucket seats, and 20 purchased an alarm system and bucket seats. If a car buyer chosen at random bought an alarm system, what is the probability they also bought bucket seats?

By Statisticshowto

  • P(SEAT) = 0.3
  • P(ALARM) = 0.4
  • P(SEAT ^ ALARM) = 0.2
  • P(SEAT | ALARAM) = ?
from pprobs.simulation import Simulator

space = Simulator()

space.add_event('SEAT', 0.3).add_event('ALARM', 0.4) # We can also add events sequentially in a line (chaining) 
space.add_event('SEAT^ALARM', 0.2) # A^B means intersection of A & B

print(space.get_prob('SEAT|ALARM')) # 0.5

Example 3

Totaly 1% of people have a certain genetic defect.90% of tests for the gene detect the defect (true positives). 9.6% of the tests are false positives. If a person gets a positive test result, what are the odds they actually have the genetic defect?

By Statisticshowto

  • P(GEN_DEF) = 0.01
  • P(POSITIVE|GEN_DEF) = 0.9
  • P(POSITIVE|GEN_DEF!) = 0.096
  • P(GEN_DEF|POSITIVE) = ?
space = Simulator()

space.add_event('GEN_DEF', 0.01)
space.add_event('POSITIVE|GEN_DEF', 0.9) # A|B means A given B
space.add_event('POSITIVE|GEN_DEF!', 0.096) # A! means complement of A

print(space.get_prob('GEN_DEF|POSITIVE')) # 0.0865

Example 4

Bob has an important meeting tomorrow and he has to reach the office on time in the morning. His general mode of transport is by car and on a regular day (no car trouble) the probability that he will reach on time is 0.3. The probability that he might have car trouble is 0.2. If the car runs into trouble he will have to take a train and only 2 trains out of the available 10 trains will get him to the office on time.

By Hackerearth

  • P(ON_TIME|CAR_OK) = 0.3
  • P(ON_TIME|CAR_OK!) = 2/10 => Go by train
  • P(CAR_OK!) = 0.2
  • P(ON_TIME) = ?
space = Simulator()

space.add_event('ON_TIME|CAR_OK', 0.3)
space.add_event('ON_TIME|CAR_OK!', 2/10)
space.add_event('CAR_OK!', 0.2)

prob = space.get_prob('ON_TIME') # Probability of ON_TIME

print(prob) # 0.28

Distribution Simulator

It is useful to create a custom single or joint distribution with a specific PMF or PDF to get a probability table and generate data based on a probability function.

Example 1

Suppose that we have a discrete random variable with a specific PMF. We want to generate many data based on this variable. As you see in the second example 1 has the largest probability and duplicates more and 4 has the smallest probability and duplicates less.

from pprobs.distribution import Discrete

# First 
def pmf(x):
    return 1 / 6

dist = Discrete(pmf, [1, 2, 3, 4, 5, 6]) # The second is the sample space of our PMF

print(dist.generate(15)) # [4, 3, 1, 6, 5, 3, 5, 3, 5, 4, 2, 5, 6, 1, 6]


# Second
def pmf(x):
    return 1 / x

dist = Discrete(pmf, [1, 2, 3, 4])
print(dist.generate(15)) # [1, 2, 1, 1, 1, 4, 3, 1, 1, 3, 2, 4, 1, 2, 2]

Example 2

Suppose that we have a continuous random variable with a specific PDF.

from pprobs.distribution import Continuous

def pdf(x):
  if x > 1:
    return x / x ** 2
  return 0

dist = Continuous(pdf, [1, 6]) # The second is the sample interval of our PDF

print(dist.generate(15)) # [2.206896551724138, 4.103448275862069, ..., 5.655172413793104, 6.0]

Example 3

Suppose that we have a Continuous Joint variable with a specific PDF.

from pprobs.distribution import Joint

def pdf(x, y):
  if x > 1:
    return 1 / (x * y)
  return 0

dist = Joint(pdf, [1, 6], [3, 10]) # The second and third are the intervals of our PDF

print(dist.probability_table(force=20)) # if force gets more, many number will generate

Output:

X/Y x=3.0 X=3.7 ... X=10
X=1.0 0.000 0.000 ... 0.000
... ... ... ... ...
X=6.0 0.055 0.044 ... 0.016
print(dist.get_prob(3.5, 3.5)) # 0.081 is P(X=3.5, Y=3.5)
print(dist.get_prob([1, 6], 4)) # 0.041 is P(Y=4) because X includes its whole domain
print(dist.get_prob(2.1, [1, 4])) # 0.206 is P(X=2.1, Y in [1, 4])

Example 4

Suppose that we have a Discrete Joint variable with a specific PMF.

from pprobs.distribution import Joint

def pmf(x, y):
  if x > 1:
    return 1 / (x * y)
  return 0

dist = Joint(pmf, range(1, 6), range(6, 10)) # The second and third are the sample space of our PMF

print(dist.probability_table()) 

Output:

X/Y Y=6 Y=7 Y=8 Y=9
X=1 0.000000 0.000000 0.000000 0.000000
X=2 0.083333 0.071429 0.062500 0.055556
X=3 0.055556 0.047619 0.041667 0.037037
X=4 0.041667 0.035714 0.031250 0.027778
X=5 0.033333 0.028571 0.025000 0.022222
print(dist.get_prob(2, range(6, 10))) # 0.272 is P(X=2)
print(dist.get_prob(2, 6)) # 0.083 is P(X=2, Y=6)

Thank you if giving a star me on Github. https://github.com/mokar2001

Owner
Mohamadreza Kariminejad
I am interested in AI, Backend Development, and Mathematics.
Mohamadreza Kariminejad
Meaningful and minimalist release notes for developers

Managing manual release notes is hard. Therefore, everyone tends to generate release notes from commit messages. But, you won't get a meaningful release note at the end.

codezri 31 Dec 30, 2022
Verification of Monty Hall problem by experimental simulation.

Verification of Monty Hall problem by experimental simulation. |中文|English| In the process of learning causal inference, I learned about the Monty Hal

云端听茗 1 Nov 22, 2022
Practice10 - Operasi String With Python

Operasi String MY SOSIAL MEDIA : Apa itu Python String ? String adalah urutan si

Maulana Reza Badrudin 1 Jan 05, 2022
Fix Eitaa Messenger's Font Problem on Linux

Fix Eitaa Messenger's Font Problem on Linux

6 Oct 15, 2022
Uma versão em Python/Ursina do aplicativo Real Drum (android).

Real Drum Descrição Esta é uma versão alternativa feita em Python com a engine Ursina do aplicatio Real Drum (presente no Google Play Store). Como exe

hayukimori 5 Aug 20, 2022
Q-Tracker is originally a High School Project created by Admins of Cirus Lab.

Q-Tracker is originally a High School Project created by Admins of Cirus Lab. It's completly coded in python along with mysql.(Tkinter For GUI)

Adithya Krishnan 2 Nov 14, 2022
GMHI: Gut Microbiome Health Index

GMHI: Gut Microbiome Health Index Description Gut Microbiome Health Index (GMHI)

Daniel Chang 2 Jun 30, 2022
frida-based ceserver. iOS analysis is possible with Cheat Engine.

frida-ceserver frida-based ceserver. iOS analysis is possible with Cheat Engine. Original by Dark Byte. Usage Install frida on iOS. python main.py Cyd

KenjiroIchise 89 Jan 08, 2023
🍏 Make Thinc faster on macOS by calling into Apple's native Accelerate library

🍏 Make Thinc faster on macOS by calling into Apple's native Accelerate library

Explosion 81 Nov 26, 2022
Randomly distribute members by groups making sure that every sector is represented

Generate Groups Randomly distribute members by groups making sure that every sector is represented The Scenario Imagine that you have a large group of

Jorge Gomes 1 Oct 22, 2021
Customisable coding font with alternates, ligatures and contextual positioning

Guide Ligature Support Links Log License Guide Live Preview + Download larsenwork.com/monoid Install Quit your editor/program. Unzip and open the fold

Andreas Larsen 7.6k Dec 30, 2022
Python implementation of the Lox language from Robert Nystrom's Crafting Interpreters

pylox Python implementation of the Lox language from Robert Nystrom's Crafting Interpreters. https://craftinginterpreters.com. This only implements th

David Beazley 37 Dec 28, 2022
A common, beautiful interface to tabular data, no matter the format

rows No matter in which format your tabular data is: rows will import it, automatically detect types and give you high-level Python objects so you can

Álvaro Justen 834 Jan 03, 2023
A cheat sheet for streamlit

Streamlit Cheat Sheet App to summarise streamlit docs v1.0.0 There is also an accompanying png and pdf version https://github.com/daniellewisDL/stream

Daniel Lewis 221 Jan 04, 2023
About Python's multithreading and GIL

About Python's multithreading and GIL

Souvik Ghosh 3 Mar 01, 2022
Pykeeb - A small Python script that prints out currently connected keyboards

pykeeb 🐍 ⌨️ A small Python script that detects and prints out currently connect

Jordan Duabe 1 May 08, 2022
Find virtual hosts (vhosts) from IP addresses and hostnames

Features Enumerate vhosts from a list of IP addresses and domain names. Virtual Hosts are enumerated using the following process: Supplied domains are

3 Jul 09, 2022
A simple desktop application to scan and export Genshin Impact Artifacts.

「天目」 -- Amenoma 简体中文 | English 「天目流的诀窍就是滴水穿石的耐心和全力以赴的意志」 扫描背包中的圣遗物,并导出至 json 格式。之后可导入圣遗物分析工具( 莫娜占卜铺 、 MingyuLab 、 Genshin Optimizer 进行计算与规划等。 已支持 原神2.

夏至 475 Dec 30, 2022
Semester Project on Signal Processing @CS UCU 2021

Blur Detection with Haar Wavelet Transform Requirements Python3 opencv-python PyWavelets Install these using the following command: $ pip install -r r

ButynetsD 2 Oct 15, 2022
Collection of functions for working with interlaced content in VapourSynth.

vsfieldkit Collection of functions for working with interlaced content in VapourSynth. It does not have any hard dependencies outside of VapourSynth.

Justin Turner Arthur 11 May 27, 2022