Airflow ETL With EKS EFS Sagemaker

Overview

Airflow ETL With EKS EFS & Sagemaker (en desarrollo)

Diagrama de la solución

Importante

Si quiere subir esta app a algún repositorio, deberá primero instalar los hooks de pre-commit, así podrá tener una validación Ejecute en el directorio raíz poetry install & poetry run pre-commit install Esto tanto en el dir raíz de repo y también en el dir /Airflow-dags/github-dags

Definición del problema planteado



Contexto:

Acaba de ser contratado como el primer ingeniero de datos de una pequeña empresa de viajes. Su primera tarea para usted fue demostrar el valor y los conocimientos que se pueden generar a partir de las canalizaciones de datos. Su plan es que una vez que demuestre lo valiosos que pueden ser los datos, comenzarán a invertir en el uso de un proveedor de instancias en la nube. Por ahora, su propia computadora tendrá que hacerlo .

Objetivo:

Crear un DAG de Airflow que actúe de ETL para extraer extraiga datos estáticos S3 y los cargue en una base de datos de Postgres.

Datos a utilizar:

Para llevar a cabo el desarrollo se utilizará el dataset de demoras y cancelaciones de viajes aéreos de Kaggle que será hosteado en un bucket en S3. Lo primero será obtener los datos siguiendo estos pasos:

  • Instalar el cliente de Kaggle: pip install kaggle.
  • Instalar el cliente de aws siguiendo estas instrucciones acorde a su sistema operativo.
  • Instalar el cliente de aws eksctl siguiendo estas instrucciones
  • Configurar las credenciales siguiendo estas instrucciones.
  • Bajar datos de Kaggle:

cd to your local directory cd /path/to/dataset/

$ mkdir -p minio/data/flights-bucket

Download zipped dataset from kaggle $ kaggle datasets download -d yuanyuwendymu/airline-delay-and-cancellation-data-2009-2018

Unzip files $ unzip airline-delay-and-cancellation-data-2009-2018.zip -d raw/

Remove zipped data to save space $ aws s3 sync raw/ s3://[ml-dataset-raw-s3]/raw/

Remove zipped data to save space [optional] $ rm airline-delay-and-cancellation-data-2009-2018.zip

En este punto al correr el comando el siguiente comando debería aparecer un archivo CSV por año en el directorio de s3: aws s3 sync raw/ s3://[ml-dataset-raw-s3]/raw/



Desarrollo:

  1. Se configuro Airflow para que corra en AWS. Esto se puede hacer de varias maneras, pero aquí se desployo dentro de un cluster de kubernetes EKS. Se utilizo la herramienta git-sync para sincronizar los dags desde un repo CI/CD
  2. Se creo una instancia RDS de Postgres. La misma es Multi-AZ y posee instancia de backup. Esta instancia será utilizada como DB en los puntos siguientes.
  3. Se desarrollo un DAG de Airflow con schedule anual que:

    ○ Se calcula el promedio del tiempo de demora de salida (columna DEP_DELAY) por aeropuerto de salida (columna ORIGIN) y día.

    ○ Se utilizo un algoritmo de detección de anomalías para identificar por cada aeropuerto si hubo algún día con demoras fuera de lo normal.

    ○ Se utilizo los datos del punto anterior por cada aeropuerto para producir un gráfico desde Python usando Pandas o Matplotlib en el cual se pueda ver la cantidad de vuelos de cada día con alguna indicación en los días que fueron considerados anómalos.

    ○ Se carga la data sumarizada junto con un indicador para la fila correspondiente de cada día para indicar si para ese día en un aeropuerto particular las demoras estuvieron fuera de lo esperable. Asimismo los gráficos generados anteriormente son almacenados en S3 en un path fácilmente identificable por año y aeropuerto analizado.

  4. Se desarrollo una visualización de los datos cargados. Esto se puede hacer alternativamente de dos maneras (se realiza una de las dos): ○ Configurar Superset para que se levante utilizando Docker y muestre un dashboard. En caso de utilizar Docker o Docker Compose es necesario incluir instrucciones y archivos necesarios para llevar a cabo la configuración.

    ○ Configurar un dashboard con el servicio AWS Quicksight. En este caso es necesario incluir en la documentación del proyecto los pasos requeridos para que el servicio quede operativo.

    Notas:
  • El DAG funciona para cualquiera de los años 2009 a 2018 incluidos en el dataset. Se tiene en cuenta que si se corre dos veces para el mismo año podría haber una duplicación de datos y se resolvió.

Pasos

Clonamos el repositorio de la siguiente manera: git clone https://github.com/marcelogramma/Airflow-ETL-With-EKS-EFS-Sagemaker.git y luego ingresamos al directorio clonado.

Nos dirigimos con nuestro navegador web a la consola de AWS. Una vez logueados, vamos al servicio de Cloudformation mediante el cual nos permitirá desployar la infraestructura de nuestra solución. Los yml que se utilizaran para desployar la infraestructura se encuentran en el dir /CloudFormation, los mismos son 4 archivos numerados que deben ir subiéndose uno a uno, cuando el anterior termine.

Como desployar la infraestructura

Nos dirigimos a la herramienta CloudFormation

1- Sobre la izquierda, en el menú Crear pila, hacemos click en "con recursos nuevos (estándar)



2 - Seleccionamos Cargar un archivo de plantilla

3 - Seleccionamos el primer archivo del directorio /cloudformation (01-ML-Network.yml) y damos siguiente donde definiremos el nombre de nuestra pila y entorno

4 - Definimos etiquetas y rol,

siguiente dos veces y crear

comenzado de esta manera la creación del stack de red. En este punto se crea la VPC, Subnets, Internet GW y tabla de ruteo necesario para la implementación. Aguardar que finalice el proceso y verificar que no haya errores

5 - Repetimos este procedimiento con dada uno de los 3 restantes archivos yaml numerados hasta el 04. Solamente se muestran imágenes con los parámetros a tener en cuenta en cada creación

6 - Seguimos con la creación del stack 02-ML-SG.yaml

siguiente

Crear pila

7 - Crear pila con el archivo 03-ML-S3.yaml (igual que el paso anterior, solo se muestran configuración necesarias, el resto son a elección)

7.1 - Desde la consola web de aws, dirigirnos en otra pestaña, al servicio S3

7.2 - Ingresar al bucket ml-airflow-s3, y crear la carpeta logs

7.3 - ingresar al bucket ml-dataset-raw-s3, y crear la carpeta raw

8 - En este punto repetimos lo mismo con el archivo 04-ML-RDS.yaml. Tener en cuenta de seleccionar las subnets correctas. (ML-Network Private Subnet ML 1 y ML 2)

Setear password recordable, username postgres y security groups, como muestra la imagen

Configuraciones varias

Siguiente y luego crear. Este proceso demora aproximadamente unos 15 minutos en tener operativa la DB de postgres. Aguardar que termine completamente con resultado ok. Aproveche este tiempo para ondar en la infraestructura desplegada (VPC, subnets, SG, etc)

9 - En este punto crearemos nuestro cluster en EKS. Para esto dirigirse al servicio EKS desde la consola hacemos click en agregar nuevo cluser -> Crear

10 - Definimos el nombre del cluster, versión de kubernetes y role (probado con la versión 1.21) y damos siguiente

11 - Definimos la VPC, subnets (ML-Network Public Subnet ML 1 y ML 2) y el Secutiry Group ML-SG-EKSecurityGroup-xxxxxxxx

Luego dejamos todo por defecto asegurándonos que el acceso en este caso sea publico y le damos siguiente dos veces, revisamos y creamos. Este paso demora unos 20 minutos en tener el cluster activo Mientras esto sucede, vamos a configurar la CLI para poder tener acceso al cluster desde la misma. Obtener los datos de aws_access_key_id, aws_secret_access_key y aws_session_token y pegar en el siguiente archivo, si no existe crearlo,

Debería quedar similar a esta imagen.

Luego verificamos que este funcionando con el comando:

$ eksctl get cluster

12 - Una vez que el cluster este activo, pasáramos a la creación de los nodos, haciendo click en informática y luego en agregar grupo de nodos

Definimos un nombre y el rol, el resto por defecto y hacemos siguiente

Definimos el tipo de capacidad, la AMI y el tipo de instancia con su tamaño de disco

La cantidad de nodos para el escalado y siguiente

Dejamos seleccionadas las dos subnets que vienen (son las mismas que usa el control plane, no modificar) y el SG

SG

Siguiente y crear. Aguardamos que termine el proceso y queden los nodos activos.

13 - Una vez que quede el grupo de nodos activos, configuraremos kubectl (como instalar kubectl ) para que opere el cluster desde la CLI. Para esto ejecutamos desde la consola

$ aws eks update-kubeconfig --region us-east-1 --name ML-EKS

y lo verificamos con $ kubectl get svc y kubectl get nodes

14 - Ahora vamos a desployar el dashboard de kubernetes con el siguiente tutorial, el cual no voy a explicar acá, ya que se va de contexto. Una vez que haya pasado este paso podrá ingresar al dashboard con este link http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/#!/login

Donde podrá administrar por otro medio mas su cluster y vera algo similar a esta imagen

15 - Ahora desarrollaremos la implementación. de EFS en la nube, para ellos realice desde la terminal lo siguiente:

15.1 - $ kubectl apply -k "github.com/kubernetes-sigs/aws-efs-csi-driver/deploy/kubernetes/overlays/stable/ecr/?ref=release-1.1" Solo para regiones diferente a china y sin usar Fargate

15.2 - $ aws eks describe-cluster --name your_cluster_name --query "cluster.resourcesVpcConfig.vpcId" --output text

15.3 - $ aws ec2 describe-vpcs --vpc-ids YOUR_VPC_ID --query "Vpcs[].CidrBlock" --output text

15.4 - $ aws ec2 create-security-group --description efs-ml-efs-sg --group-name efs-sg --vpc-id YOUR_VPC_ID

15.5 - $ aws ec2 authorize-security-group-ingress --group-id sg-xxx --protocol tcp --port 2049 --cidr YOUR_VPC_CIDR

15.6 - $ aws efs create-file-system --creation-token eks-efs

15.7 - $ aws efs create-mount-target --file-system-id FileSystemId --subnet-id SubnetID --security-group sg-xxx (este punto deberá realizarlo dos veces, una por cada subnet)

En este punto tenemos creado el EFS en la nube y procederemos a utilizarlo dentro del cluster. Para esto debemos editar el archivo airflow-helm/efs-pvc.yml con el valor de nuestro fs en la clave server.

Para realizar este punto, desde la consola de aws, vamos al servicio EFS donde veremos el sistema de archivo recién creado

Y copiamos el ID del sistema de archivos al archivo de la imagen anterior. Guardamos el cambio y ejecutamos el siguiente comando

$ kubectl apply -f efs-pvc.yml

luego de que se aplique, podemos ver el deploy en el cluster con los siguientes comandos $ kubectl get pv y $ kubectl get pv

Aclaración, no se usara el FS, ya que requiere mas configuración y explicación y se va fuera de contexto y foco de lo pedido, solo se muestra como realizar su implementación. y deployarlo en el EKS.

16 - Modificar el archivos airflow-helm/value.yml en la sección connections, con las key de acceso a la CLI

También modificar por su repositorio de Github, donde implemente CI/CD para los dags

17 - Luego de estas modificaciones, ejecutamos los siguientes comando

$ kubectl apply -f airflow-db-secret.yml y $ helm install ml-airflow airflow-stable/airflow --versión 8.5.3 --values values.yml Nota. Debera tener instalado HELM y ademas el repo Helm Chart for Apache Airflow

Con este ultimo comando estamos ya desployando Apache Airflow en el cluster EKS, esto demora unos minutos, aguarde y verifique que el deploy se complete normalmente

Cuando helm termine, veremos este mensaje

Esto quiere decir que ya se desployo, pero para verificar que este ok, dirigirse al cluster en el servicio EKS y verificar las cargas de trabajo

Si todo esta ok, ejecutaremos los siguientes comandos

$ kubectl port-forward svc/ml-airflow-web 8080:8080 --namespace default > /dev/null &

$ kubectl port-forward svc/ml-airflow-flower 5555:5555 --namespace default > /dev/null &

El primero para ingresar a Airflow Web (user/pass admin admin) y el segundo al dash del flower

Acá podemos ver el DAG que sincronizo desde GitHub

Y el home del flower

CONTINUARA...

Project under the certification "Data Analysis with Python" on FreeCodeCamp

Sea Level Predictor Assignment You will anaylize a dataset of the global average sea level change since 1880. You will use the data to predict the sea

Bhavya Gopal 3 Jan 31, 2022
Exploratory Data Analysis for Employee Retention Dataset

Exploratory Data Analysis for Employee Retention Dataset Employee turn-over is a very costly problem for companies. The cost of replacing an employee

kana sudheer reddy 2 Oct 01, 2021
collect training and calibration data for gaze tracking

Collect Training and Calibration Data for Gaze Tracking This tool allows collecting gaze data necessary for personal calibration or training of eye-tr

Pascal 5 Dec 17, 2022
Udacity-api-reporting-pipeline - Udacity api reporting pipeline

udacity-api-reporting-pipeline In this exercise, you'll use portions of each of

Fabio Barbazza 1 Feb 15, 2022
Using Python to derive insights on particular Pokemon, Types, Generations, and Stats

Pokémon Analysis Andreas Nikolaidis February 2022 Introduction Exploratory Analysis Correlations & Descriptive Statistics Principal Component Analysis

Andreas 1 Feb 18, 2022
DaCe is a parallel programming framework that takes code in Python/NumPy and other programming languages

aCe - Data-Centric Parallel Programming Decoupling domain science from performance optimization. DaCe is a parallel programming framework that takes c

SPCL 330 Dec 30, 2022
SparseLasso: Sparse Solutions for the Lasso

SparseLasso: Sparse Solutions for the Lasso Introduction SparseLasso provides a Scikit-Learn based estimation of the Lasso with cross-validation tunin

Gabriel Okasa 1 Nov 08, 2021
Pyspark Spotify ETL

This is my first Data Engineering project, it extracts data from the user's recently played tracks using Spotify's API, transforms data and then loads it into Postgresql using SQLAlchemy engine. Data

16 Jun 09, 2022
Streamz helps you build pipelines to manage continuous streams of data

Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelines that involve branching, joining, flow control, feedbac

Python Streamz 1.1k Dec 28, 2022
Spaghetti: an open-source Python library for the analysis of network-based spatial data

pysal/spaghetti SPAtial GrapHs: nETworks, Topology, & Inference Spaghetti is an open-source Python library for the analysis of network-based spatial d

Python Spatial Analysis Library 203 Jan 03, 2023
A tax calculator for stocks and dividends activities.

Revolut Stocks calculator for Bulgarian National Revenue Agency Information Processing and calculating the required information about stock possession

Doino Gretchenliev 200 Oct 25, 2022
A Python adaption of Augur to prioritize cell types in perturbation analysis.

A Python adaption of Augur to prioritize cell types in perturbation analysis.

Theis Lab 2 Mar 29, 2022
pipeline for migrating lichess data into postgresql

How Long Does It Take Ordinary People To "Get Good" At Chess? TL;DR: According to 5.5 years of data from 2.3 million players and 450 million games, mo

Joseph Wong 182 Nov 11, 2022
Office365 (Microsoft365) audit log analysis tool

Office365 (Microsoft365) audit log analysis tool The header describes it all WHY?? The first line of code was written long time before other colleague

Anatoly 1 Jul 27, 2022
This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

Donald F. Ferguson 4 Mar 06, 2022
ped-crash-techvol: Texas Ped Crash Tech Volume Pack

ped-crash-techvol: Texas Ped Crash Tech Volume Pack In conjunction with the Final Report "Identifying Risk Factors that Lead to Increase in Fatal Pede

Network Modeling Center; Center for Transportation Research; The University of Texas at Austin 2 Sep 28, 2022
Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations.

Elicited Helper tools to construct probability distributions built from expert elicited data for use in monte carlo simulations. Credit to Brett Hoove

Ryan McGeehan 3 Nov 04, 2022
An easy-to-use feature store

A feature store is a data storage system for data science and machine-learning. It can store raw data and also transformed features, which can be fed straight into an ML model or training script.

ByteHub AI 48 Dec 09, 2022
This mini project showcase how to build and debug Apache Spark application using Python

Spark app can't be debugged using normal procedure. This mini project showcase how to build and debug Apache Spark application using Python programming language. There are also options to run Spark a

Denny Imanuel 1 Dec 29, 2021
Useful tool for inserting DataFrames into the Excel sheet.

PyCellFrame Insert Pandas DataFrames into the Excel sheet with a bunch of conditions Install pip install pycellframe Usage Examples Let's suppose that

Luka Sosiashvili 1 Feb 16, 2022