User friendly Rasterio plugin to read raster datasets.

Overview

rio-tiler

rio-tiler

User friendly Rasterio plugin to read raster datasets.

Test Coverage Package version Conda Forge Downloads Downloads Binder


Documentation: https://cogeotiff.github.io/rio-tiler/

Source Code: https://github.com/cogeotiff/rio-tiler


Description

rio-tiler was initialy designed to create slippy map tiles from large raster data sources and render these tiles dynamically on a web map. With rio-tiler v2.0 we added many more helper methods to read data and metadata from any raster source supported by Rasterio/GDAL. This includes local files and via HTTP, AWS S3, Google Cloud Storage, etc.

At the low level, rio-tiler is just a wrapper around the rasterio.vrt.WarpedVRT class, which can be useful for doing reprojection and/or property overriding (e.g nodata value).

Features

  • Read any dataset supported by GDAL/Rasterio

    from rio_tiler.io import COGReader
    
    with COGReader("my.tif") as image:
        print(image.dataset)  # rasterio opened dataset
        img = image.read()    # similar to rasterio.open("my.tif").read() but returns a rio_tiler.models.ImageData object
  • User friendly tile, part, feature, point reading methods

    from rio_tiler.io import COGReader
    
    with COGReader("my.tif") as image:
        img = image.tile(x, y, z)            # read mercator tile z-x-y
        img = image.part(bbox)               # read the data intersecting a bounding box
        img = image.feature(geojson_feature) # read the data intersecting a geojson feature
        img = image.point(lon,lat)           # get pixel values for a lon/lat coordinates
  • Enable property assignement (e.g nodata) on data reading

    from rio_tiler.io import COGReader
    
    with COGReader("my.tif") as image:
        img = image.tile(x, y, z, nodata=-9999) # read mercator tile z-x-y
  • STAC support

    from rio_tiler.io import STACReader
    
    with STACReader("item.json") as stac:
        print(stac.assets)  # available asset
        img = stac.tile(x, y, z, assets="asset1", indexes=(1, 2, 3))  # read tile for asset1 and indexes 1,2,3
        img = stac.tile(x, y, z, assets=("asset1", "asset2", "asset3",), indexes=(1,))  # create an image from assets 1,2,3 using their first band
  • Mosaic (merging or stacking)

    from rio_tiler.io import COGReader
    from rio_tiler.mosaic import mosaic_reader
    
    def reader(file, x, y, z, **kwargs):
        with COGReader("my.tif") as image:
            return image.tile(x, y, z, **kwargs)
    
    img, assets = mosaic_reader(["image1.tif", "image2.tif"], reader, x, y, z)
  • Native support for multiple TileMatrixSet via morecantile

    import morecantile
    from rio_tiler.io import COGReader
    
    # Use EPSG:4326 (WGS84) grid
    wgs84_grid = morecantile.tms.get("WorldCRS84Quad")
    with COGReader("my.tif", tms=wgs84_grid) as cog:
        img = cog.tile(1, 1, 1)

Install

You can install rio-tiler using pip

$ pip install -U pip
$ pip install -U rio-tiler

or install from source:

$ git clone https://github.com/cogeotiff/rio-tiler.git
$ cd rio-tiler
$ pip install -U pip
$ pip install -e .

GDAL>=3.0 / PROJ>=6.0 performances issue

rio-tiler is often used for dynamic tiling, where we need to perform small tasks involving cropping and reprojecting the input data. Starting with GDAL>=3.0 the project shifted to PROJ>=6, which introduced new ways to store projection metadata (using a SQLite database and/or cloud stored grids). This change introduced a performance regression as mentioned in https://mapserver.gis.umn.edu/id/development/rfc/ms-rfc-126.html:

using naively the equivalent calls proj_create_crs_to_crs() + proj_trans() would be a major performance killer, since proj_create_crs_to_crs() can take a time in the order of 100 milliseconds in the most complex situations.

We believe the issue reported in issues/346 is in fact due to ☝️ .

To get the best performances out of rio-tiler we recommend for now to use GDAL 2.4 until a solution can be found in GDAL or in PROJ.

Note: Starting with rasterio 1.2.0, rasterio's wheels are distributed with GDAL 3.2 and thus we recommend using rasterio==1.1.8 if using the default wheels, which include GDAL 2.4.

Links:

Plugins

rio-tiler-pds

rio-tiler v1 included several helpers for reading popular public datasets (e.g. Sentinel 2, Sentinel 1, Landsat 8, CBERS) from cloud providers. This functionality is now in a separate plugin, enabling easier access to more public datasets.

rio-tiler-mvt

Create Mapbox Vector Tiles from raster sources

Implementations

rio-viz: Visualize Cloud Optimized GeoTIFFs locally in the browser

titiler: A lightweight Cloud Optimized GeoTIFF dynamic tile server.

cogeo-mosaic: Create mosaics of Cloud Optimized GeoTIFF based on the mosaicJSON specification.

Contribution & Development

See CONTRIBUTING.md

Authors

The rio-tiler project was begun at Mapbox and was transferred to the cogeotiff Github organization in January 2019.

See AUTHORS.txt for a listing of individual contributors.

Changes

See CHANGES.md.

License

See LICENSE

Owner
Pushing for adoption of Cloud Optimized GeoTIFF: An imagery format for cloud-native geospatial processing
FDTD simulator that generates s-parameters from OFF geometry files using a GPU

Emport Overview This repo provides a FDTD (Finite Differences Time Domain) simulator called emport for solving RF circuits. Emport outputs its simulat

4 Dec 15, 2022
Satellite imagery for dummies.

felicette Satellite imagery for dummies. What can you do with this tool? TL;DR: Generate JPEG earth imagery from coordinates/location name with public

Shivashis Padhi 1.8k Jan 03, 2023
Helping data scientists better understand their datasets and models in text classification. With love from ServiceNow.

Azimuth, an open-source dataset and error analysis tool for text classification, with love from ServiceNow. Overview Azimuth is an open source applica

ServiceNow 145 Dec 23, 2022
Implemented a Google Maps prototype that provides the shortest route in terms of distance

Implemented a Google Maps prototype that provides the shortest route in terms of distance, the fastest route, the route with the fewest turns, and a scenic route that avoids roads when provided a sou

1 Dec 26, 2021
LicenseLocation - License Location With Python

LicenseLocation Hi,everyone! ❀ 🧑 πŸ’› πŸ’š πŸ’™ πŸ’œ This is my first project! βœ” Actual

The Bin 1 Jan 25, 2022
This is the antenna performance plotted from tinyGS reception data.

tinyGS-antenna-map This is the antenna performance plotted from tinyGS reception data. See their repository. The code produces a plot that provides Az

Martin J. Levy 14 Aug 21, 2022
ProjPicker (projection picker) is a Python module that allows the user to select all coordinate reference systems (CRSs)

ProjPicker ProjPicker (projection picker) is a Python module that allows the user to select all coordinate reference systems (CRSs) whose extent compl

Huidae Cho 4 Feb 06, 2022
Interactive Maps with Geopandas

Create Interactive maps πŸ—ΊοΈ with your geodataframe Geopatra extends geopandas for interactive mapping and attempts to wrap the goodness of amazing map

sangarshanan 46 Aug 16, 2022
Pure Python NetCDF file reader and writer

Pyncf Pure Python NetCDF file reading and writing. Introduction Inspired by the pyshp library, which provides simple pythonic and dependency free data

Karim Bahgat 14 Sep 30, 2022
Mmdb-server - An open source fast API server to lookup IP addresses for their geographic location

mmdb-server mmdb-server is an open source fast API server to lookup IP addresses

Alexandre Dulaunoy 67 Nov 25, 2022
Python bindings and utilities for GeoJSON

geojson This Python library contains: Functions for encoding and decoding GeoJSON formatted data Classes for all GeoJSON Objects An implementation of

Jazzband 765 Jan 06, 2023
A bot that tweets info and location map for new bicycle parking added to OpenStreetMap within a GeoJSON boundary.

Bike parking tweepy bot app A twitter bot app that searches for bicycle parking added to OpenStreetMap. Relies on AWS Lambda/S3, Python3, Tweepy, Flas

Angelo Trivisonno 1 Dec 19, 2021
A Python package for delineating nested surface depressions from digital elevation data.

Welcome to the lidar package lidar is Python package for delineating the nested hierarchy of surface depressions in digital elevation models (DEMs). I

Qiusheng Wu 166 Jan 03, 2023
Python Data. Leaflet.js Maps.

folium Python Data, Leaflet.js Maps folium builds on the data wrangling strengths of the Python ecosystem and the mapping strengths of the Leaflet.js

6k Jan 02, 2023
A short term landscape evolution using a path sampling method to solve water and sediment flow continuity equations and model mass flows over complex topographies.

r.sim.terrain A short-term landscape evolution model that simulates topographic change for both steady state and dynamic flow regimes across a range o

Brendan Harmon 7 Oct 21, 2022
Constraint-based geometry sketcher for blender

Geometry Sketcher Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like

1.7k Jan 02, 2023
A multi-page streamlit app for the geospatial community.

A multi-page streamlit app for the geospatial community.

Qiusheng Wu 522 Dec 30, 2022
scalable analysis of images and time series

thunder scalable analysis of image and time series analysis in python Thunder is an ecosystem of tools for the analysis of image and time series data

thunder-project 813 Dec 29, 2022
Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Ayush Mishra 3 May 06, 2022
A compilation of several single-beam bathymetry surveys of the Caribbean

Caribbean - Single-beam bathymetry This dataset is a compilation of several single-beam bathymetry surveys of the Caribbean ocean displaying a wide ra

Fatiando a Terra Datasets 0 Jan 20, 2022