User friendly Rasterio plugin to read raster datasets.

Overview

rio-tiler

rio-tiler

User friendly Rasterio plugin to read raster datasets.

Test Coverage Package version Conda Forge Downloads Downloads Binder


Documentation: https://cogeotiff.github.io/rio-tiler/

Source Code: https://github.com/cogeotiff/rio-tiler


Description

rio-tiler was initialy designed to create slippy map tiles from large raster data sources and render these tiles dynamically on a web map. With rio-tiler v2.0 we added many more helper methods to read data and metadata from any raster source supported by Rasterio/GDAL. This includes local files and via HTTP, AWS S3, Google Cloud Storage, etc.

At the low level, rio-tiler is just a wrapper around the rasterio.vrt.WarpedVRT class, which can be useful for doing reprojection and/or property overriding (e.g nodata value).

Features

  • Read any dataset supported by GDAL/Rasterio

    from rio_tiler.io import COGReader
    
    with COGReader("my.tif") as image:
        print(image.dataset)  # rasterio opened dataset
        img = image.read()    # similar to rasterio.open("my.tif").read() but returns a rio_tiler.models.ImageData object
  • User friendly tile, part, feature, point reading methods

    from rio_tiler.io import COGReader
    
    with COGReader("my.tif") as image:
        img = image.tile(x, y, z)            # read mercator tile z-x-y
        img = image.part(bbox)               # read the data intersecting a bounding box
        img = image.feature(geojson_feature) # read the data intersecting a geojson feature
        img = image.point(lon,lat)           # get pixel values for a lon/lat coordinates
  • Enable property assignement (e.g nodata) on data reading

    from rio_tiler.io import COGReader
    
    with COGReader("my.tif") as image:
        img = image.tile(x, y, z, nodata=-9999) # read mercator tile z-x-y
  • STAC support

    from rio_tiler.io import STACReader
    
    with STACReader("item.json") as stac:
        print(stac.assets)  # available asset
        img = stac.tile(x, y, z, assets="asset1", indexes=(1, 2, 3))  # read tile for asset1 and indexes 1,2,3
        img = stac.tile(x, y, z, assets=("asset1", "asset2", "asset3",), indexes=(1,))  # create an image from assets 1,2,3 using their first band
  • Mosaic (merging or stacking)

    from rio_tiler.io import COGReader
    from rio_tiler.mosaic import mosaic_reader
    
    def reader(file, x, y, z, **kwargs):
        with COGReader("my.tif") as image:
            return image.tile(x, y, z, **kwargs)
    
    img, assets = mosaic_reader(["image1.tif", "image2.tif"], reader, x, y, z)
  • Native support for multiple TileMatrixSet via morecantile

    import morecantile
    from rio_tiler.io import COGReader
    
    # Use EPSG:4326 (WGS84) grid
    wgs84_grid = morecantile.tms.get("WorldCRS84Quad")
    with COGReader("my.tif", tms=wgs84_grid) as cog:
        img = cog.tile(1, 1, 1)

Install

You can install rio-tiler using pip

$ pip install -U pip
$ pip install -U rio-tiler

or install from source:

$ git clone https://github.com/cogeotiff/rio-tiler.git
$ cd rio-tiler
$ pip install -U pip
$ pip install -e .

GDAL>=3.0 / PROJ>=6.0 performances issue

rio-tiler is often used for dynamic tiling, where we need to perform small tasks involving cropping and reprojecting the input data. Starting with GDAL>=3.0 the project shifted to PROJ>=6, which introduced new ways to store projection metadata (using a SQLite database and/or cloud stored grids). This change introduced a performance regression as mentioned in https://mapserver.gis.umn.edu/id/development/rfc/ms-rfc-126.html:

using naively the equivalent calls proj_create_crs_to_crs() + proj_trans() would be a major performance killer, since proj_create_crs_to_crs() can take a time in the order of 100 milliseconds in the most complex situations.

We believe the issue reported in issues/346 is in fact due to ☝️ .

To get the best performances out of rio-tiler we recommend for now to use GDAL 2.4 until a solution can be found in GDAL or in PROJ.

Note: Starting with rasterio 1.2.0, rasterio's wheels are distributed with GDAL 3.2 and thus we recommend using rasterio==1.1.8 if using the default wheels, which include GDAL 2.4.

Links:

Plugins

rio-tiler-pds

rio-tiler v1 included several helpers for reading popular public datasets (e.g. Sentinel 2, Sentinel 1, Landsat 8, CBERS) from cloud providers. This functionality is now in a separate plugin, enabling easier access to more public datasets.

rio-tiler-mvt

Create Mapbox Vector Tiles from raster sources

Implementations

rio-viz: Visualize Cloud Optimized GeoTIFFs locally in the browser

titiler: A lightweight Cloud Optimized GeoTIFF dynamic tile server.

cogeo-mosaic: Create mosaics of Cloud Optimized GeoTIFF based on the mosaicJSON specification.

Contribution & Development

See CONTRIBUTING.md

Authors

The rio-tiler project was begun at Mapbox and was transferred to the cogeotiff Github organization in January 2019.

See AUTHORS.txt for a listing of individual contributors.

Changes

See CHANGES.md.

License

See LICENSE

Owner
Pushing for adoption of Cloud Optimized GeoTIFF: An imagery format for cloud-native geospatial processing
A service to auto provision devices in Aruba Central based on the Geo-IP location

Location Based Provisioning Service for Aruba Central A service to auto provision devices in Aruba Central based on the Geo-IP location Geo-IP auto pr

Will Smith 3 Mar 22, 2022
Bacon - Band-limited Coordinate Networks for Multiscale Scene Representation

BACON: Band-limited Coordinate Networks for Multiscale Scene Representation Project Page | Video | Paper Official PyTorch implementation of BACON. BAC

Stanford Computational Imaging Lab 144 Dec 29, 2022
Satellite imagery for dummies.

felicette Satellite imagery for dummies. What can you do with this tool? TL;DR: Generate JPEG earth imagery from coordinates/location name with public

Shivashis Padhi 1.8k Jan 03, 2023
geemap - A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and ipywidgets.

A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and folium

Qiusheng Wu 2.4k Dec 30, 2022
Python 台灣行政區地圖 (2021)

Python 台灣行政區地圖 (2021) 以 python 讀取政府開放平台的 ShapeFile 地圖資訊。歡迎引用或是協作 另有縣市資訊、村里資訊與各種行政地圖資訊 例如: 直轄市、縣市界線(TWD97經緯度) 鄉鎮市區界線(TWD97經緯度) | 政府資料開放平臺: https://data

WeselyOng 12 Sep 27, 2022
Creates 3D geometries from 2D vector graphics, for use in geodynamic models

geomIO - creating 3D geometries from 2D input This is the Julia and Python version of geomIO, a free open source software to generate 3D volumes and s

3 Feb 01, 2022
leafmap - A Python package for geospatial analysis and interactive mapping in a Jupyter environment.

A Python package for geospatial analysis and interactive mapping with minimal coding in a Jupyter environment

Qiusheng Wu 1.4k Jan 02, 2023
This repository contains the scripts to derivate the ENU and ECEF coordinates from the longitude, latitude, and altitude values encoded in the NAD83 coordinates.

This repository contains the scripts to derivate the ENU and ECEF coordinates from the longitude, latitude, and altitude values encoded in the NAD83 coordinates.

Luigi Cruz 1 Feb 07, 2022
Water Detect Algorithm

WaterDetect Synopsis WaterDetect is an end-to-end algorithm to generate open water cover mask, specially conceived for L2A Sentinel 2 imagery from MAJ

142 Dec 30, 2022
Cloud Optimized GeoTIFF creation and validation plugin for rasterio

rio-cogeo Cloud Optimized GeoTIFF (COG) creation and validation plugin for Rasterio. Documentation: https://cogeotiff.github.io/rio-cogeo/ Source Code

216 Dec 31, 2022
Platform for building statistical models of cities and regions

UrbanSim UrbanSim is a platform for building statistical models of cities and regions. These models help forecast long-range patterns in real estate d

Urban Data Science Toolkit 419 Dec 30, 2022
Open GeoJSON data on geojson.io

geojsonio.py Open GeoJSON data on geojson.io from Python. geojsonio.py also contains a command line utility that is a Python port of geojsonio-cli. Us

Jacob Wasserman 114 Dec 21, 2022
Python renderer for OpenStreetMap with custom icons intended to display as many map features as possible

Map Machine project consists of Python OpenStreetMap renderer: SVG map generation, SVG and PNG tile generation, Röntgen icon set: unique CC-BY 4.0 map

Sergey Vartanov 0 Dec 18, 2022
Pandas Network Analysis: fast accessibility metrics and shortest paths, using contraction hierarchies :world_map:

Pandana Pandana is a Python library for network analysis that uses contraction hierarchies to calculate super-fast travel accessibility metrics and sh

Urban Data Science Toolkit 321 Jan 05, 2023
Python Data. Leaflet.js Maps.

folium Python Data, Leaflet.js Maps folium builds on the data wrangling strengths of the Python ecosystem and the mapping strengths of the Leaflet.js

6k Jan 02, 2023
Record railway train route profile with GNSS tools

Train route profile recording with GNSS technology based on ARDUINO platform Project target Develop GNSS recording tools based on the ARDUINO platform

tomcom 1 Jan 01, 2022
This is the antenna performance plotted from tinyGS reception data.

tinyGS-antenna-map This is the antenna performance plotted from tinyGS reception data. See their repository. The code produces a plot that provides Az

Martin J. Levy 14 Aug 21, 2022
scalable analysis of images and time series

thunder scalable analysis of image and time series analysis in python Thunder is an ecosystem of tools for the analysis of image and time series data

thunder-project 813 Dec 29, 2022
Starlite-tile38 - Showcase using Tile38 via pyle38 in a Starlite application

Starlite-Tile38 Showcase using Tile38 via pyle38 in a Starlite application. Repo

Ben 8 Aug 07, 2022
A Python package for delineating nested surface depressions from digital elevation data.

Welcome to the lidar package lidar is Python package for delineating the nested hierarchy of surface depressions in digital elevation models (DEMs). I

Qiusheng Wu 166 Jan 03, 2023