Python renderer for OpenStreetMap with custom icons intended to display as many map features as possible

Overview

Map Machine project consists of

The idea behind the Map Machine project is to show all the richness of the OpenStreetMap data: to have a possibility to display any map feature represented by OpenStreetMap data tags by means of colors, shapes, and icons. Map Machine is created both for map contributors: to display all changes one made on the map even if they are small, and for map users: to dig down into the map and find every detail that was mapped.

Unlike standard OpenStreetMap layers, Map Machine is a playground for experiments where one can easily try to support any unsupported tag, proposed tagging scheme, tags with little or even single usage, deprecated ones that are still in use.

Map Machine is intended to be highly configurable, so it can generate precise but messy maps for OSM contributors as well as pretty and clean maps for OSM users. It can also use some slow algorithms for experimental features.

Usage example

map-machine render -b 2.284,48.860,2.290,48.865

will automatically download OSM data and write output SVG map of the specified area to out/map.svg. See Map generation.

map-machine tile -b 2.361,48.871,2.368,48.875

will automatically download OSM data and write output PNG tiles that cover the specified area to the out/tiles directory. See Tile generation.

Röntgen icon set

The central feature of the project is Röntgen icon set. It is a set of monochrome 14 × 14 px pixel-aligned icons specially created for Map Machine project. Unlike the Map Machine source code, which is under MIT license, all icons are under CC BY license. So, with the appropriate credit icon set can be used outside the project. Some icons can be used as emoji symbols.

All icons tend to support a common design style, which is heavily inspired by Maki, Osmic, and Temaki.

Icons

Feel free to request new icons via issues for whatever you want to see on the map. No matter how frequently the tag is used in OpenStreetMap since the final goal is to cover all tags. However, commonly used tags have priority, other things being equal.

Generate icon grid and sets of individual icons with map-machine icons. It will update doc/grid.svg file, and create SVG files in out/icons_by_id directory where files are named using shape identifiers (e.g. power_tower_portal_2_level.svg) and in icons_by_name directory where files are named using shape names (e.g. Röntgen portal two-level transmission tower.svg). Files from the last directory are used in OpenStreetMap wiki (e.g. File:Röntgen_portal_two-level_transmission_tower.svg).

Map features

Extra icons

Map Machine uses icons to visualize tags for nodes and areas. But unlike other renderers, Map Machine can use more than one icon to visualize an entity and use colors to visualize colour value or other entity properties (like material or genus).

Isometric building shapes

With --buildings isometric or --buildings isometric-no-parts (not set by default), buildings are drawn using isometric shapes for walls and shade in proportion to building:levels, building:min_level, height, and min_height values.

3D buildings

Road lanes

To determine road width Map Machine uses the width tag value or estimates it based on the lanes value. If lane value is specified, it also draws lane separators. This map style is highly inspired by Christoph Hormann's post Navigating the Maze.

Road lanes

Trees

Visualization of tree leaf types (broadleaved or needle-leaved) and genus or taxon by means of icon shapes and leaf cycles (deciduous or evergreen) by means of color.

Trees

Viewpoint and camera direction

direction tag values for tourism = viewpoint and camera:direction for man_made = surveillance are rendered with sectors displaying the direction and angle (15º if angle is not specified) or the whole circle for panorama view. Radial gradient is used for surveillance and inverted radial gradient is used for viewpoints.

Surveillance

Viewpoints

Power tower design

Visualize design values used with power = tower tag.

Power tower design

Power tower design

Colors

Map icons have colour tag value if it is present, otherwise, icons are displayed with dark grey color by default, purple color for shop nodes, red color for emergency features, and special colors for natural features. Map Machine also takes into account building:colour, roof:colour and other *:colour tags, and uses colour tag value to paint subway lines.

Building colors

Emergency

Emergency

Japanese map symbols

Japanese maps usually use special symbols called chizukigou (地図記号) which are different from standard map symbols used in other countries. They can be enabled with --country jp option.

Japanese map symbols

Shape combination

One of the key features of Map Machine is constructing icons from the several shapes.

Masts

For man_made = mast distinguish types (communication, lignting, monitoring, and siren) and construction (freestanding or lattice, and using of guys) are rendered by combining 7 unique icon shapes.

Mast types

Volcanoes

For natural = volcano status (active, dormant, extinct, or unspecified) and type (stratovolcano, shield, or scorial) are rendered by combining 7 unique icon shapes.

Volcano types

Wireframe view

Creation time mode

Visualize element creation time with --mode time.

Creation time mode

Author mode

Every way and node displayed with the random color picked for each author with --mode author.

Author mode

Installation

Requirements: Python 3.9.

pip install .

Map generation

Command render is used to generate SVG map from OpenStreetMap data. You can run it using:

map-machine render \
    -b <min longitude>,<min latitude>,<max longitude>,<max latitude> \
    -o <output file name> \
    -z <OSM zoom level> \
    <other arguments>

Example

map-machine render \
    --boundary-box 2.284,48.860,2.290,48.865 \
    --output out/esplanade_du_trocadéro.svg

will download OSM data to cache/2.284,48.860,2.290,48.865.osm and write an output SVG map of the specified area to out/esplanade_du_trocadéro.svg.

Arguments

Option Description
-i, --input input XML file name or names (if not specified, file will be downloaded using OpenStreetMap API)
-o, --output output SVG file name, default value: out/map.svg
-b, --boundary-box , , , geo boundary box; if the first value is negative, enclose the value with quotes and use space before -
--cache path for temporary OSM files, default value: cache
-z, --zoom OSM zoom level, default value: 18.0
-c, --coordinates , coordinates of any location inside the tile
-s, --size , resulted image size

plus map configuration options

Tile generation

Command tile is used to generate PNG tiles for slippy maps. To use them, run Map Machine tile server.

Option Description
-c, --coordinates , coordinates of any location inside the tile
-t, --tile / / tile specification
--cache path for temporary OSM files, default value: cache
-b, --boundary-box , , , construct the minimum amount of tiles that cover the requested boundary box
-z, --zoom OSM zoom levels; can be list of numbers or ranges, e.g. 16-18, 16,17,18, or 16,18-20, default value: 18
-i, --input input OSM XML file name (if not specified, the file will be downloaded using OpenStreetMap API)

plus map configuration options

Generate one tile

Specify tile coordinates:

map-machine tile --tile <OSM zoom level>/<x>/<y>

or specify any geographical coordinates inside a tile:

map-machine tile \
    --coordinates <latitude>,<longitude> \
    --zoom <OSM zoom levels>

Tile will be stored as SVG file out/tiles/tile_ _ _ .svg and PNG file out/tiles/tile_ _ _ .svg , where x and y are tile coordinates. --zoom option will be ignored if it is used with --tile option.

Example:

map-machine tile -c 55.7510637,37.6270761 -z 18

will generate SVG file out/tiles/tile_18_158471_81953.svg and PNG file out/tiles/tile_18_158471_81953.png.

Generate a set of tiles

Specify boundary box to get the minimal set of tiles that covers the area:

map-machine tile \
    --boundary-box <min longitude>,<min latitude>,<max longitude>,<max latitude> \
    --zoom <OSM zoom levels>

The boundary box will be extended to the boundaries of the minimal tileset that covers the area, then it will be extended a bit more to avoid some artifacts on the edges rounded to 3 digits after the decimal point. Map with new boundary box coordinates will be written to the cache directory as SVG and PNG files. All tiles will be stored as SVG files out/tiles/tile_ _ _ .svg and PNG files out/tiles/tile_ _ _ .svg , where x and y are tile coordinates.

Example:

map-machine tile -b 2.361,48.871,2.368,48.875

will generate 36 PNG tiles at zoom level 18 from tile 18/132791/90164 all the way to 18/132796/90169 and two cached files cache/2.360,48.869,2.370,48.877_18.svg and cache/2.360,48.869,2.370,48.877_18.png.

Tile server

Command server is used to run tile server for slippy maps.

map-machine server

Stop server interrupting the process with Ctrl + C.

Option Description
--cache path for temporary OSM files, default value: cache
--port port number, default value: 8080

Example

Create a minimal amount of tiles that cover specified boundary box for zoom levels 16, 17, 18, and 19:

map-machine tile -b 2.364,48.854,2.367,48.857 -z 16-19

Run tile server on 127.0.0.1:8080:

map-machine server

Use JavaScript code for Leaflet:

OpenStreetMap ' + 'contributors, imagery © ' + 'Map Machine', id: 'map_machine', tileSize: 256, zoomOffset: 0 }).addTo(map);">
var map = L.map('mapid').setView([48.8555, 2.3655], 18);

L.tileLayer('http://127.0.0.1:8080/tiles/{z}/{x}/{y}', {
    maxZoom: 19,
    attribution: 'Map data © ' +
        'OpenStreetMap ' +
        'contributors, imagery © ' +
        'Map Machine',
    id: 'map_machine',
    tileSize: 256,
    zoomOffset: 0
}).addTo(map);

HTML code:

">
<div id="mapid" style="width: 1000px; height: 600px;">div>

Map options

Map configuration options used by render and tile commands:

Option Description
--buildings building drawing mode: no, flat, isometric, isometric-no-parts, default value: flat
--mode map drawing mode: normal, author, time, white, black, default value: normal
--overlap how many pixels should be left around icons and text, default value: 12
--labels label drawing mode: no, main, all, address, default value: main
--level display only this floor level, default value: overground
--seed seed for random
--tooltips add tooltips with tags for icons in SVG files
--country two-letter code (ISO 3166-1 alpha-2) of country, that should be used for location restrictions, default value: world
--ignore-level-matching draw all map features ignoring the current level
--roofs draw building roofs, set by default

MapCSS 0.2 generation

Command mapcss is used to generate MapCSS scheme. map-machine mapcss will create out/map_machine_mapcss directory with simple MapCSS 0.2 scheme adding icons from Röntgen icon set to nodes and areas: .mapcss file and directory with icons.

To create MapCSS with Map Machine style also for ways and relations, run map-machine mapcss --ways.

Option Description
--icons add icons for nodes and areas, set by default
--ways add style for ways and relations
--lifecycle add icons for lifecycle tags; be careful: this will increase the number of node and area selectors by 9 times, set by default

Use Map Machine as JOSM map paint style

  • Run map-machine mapcss.
  • Open JOSM.
  • Go to Preferences → Third tab on the left → Map Paint Styles.
  • Active styles: press +.
  • URL / File: set path to out/map_machine_mapcss/map_machine.mapcss.

To enable/disable Map Machine map paint style go to ViewMap Paint StylesMap Machine.

Example

JOSM example

Example of using Röntgen icons on top of Mapnik style in JOSM. Map Paint Styles look like this:

  • ✓ Mapnik (true)
  • ✓ Map Machine
Owner
Sergey Vartanov
Sergey Vartanov
A package built to support working with spatial data using open source python

EarthPy EarthPy makes it easier to plot and manipulate spatial data in Python. Why EarthPy? Python is a generic programming language designed to suppo

Earth Lab 414 Dec 23, 2022
Constraint-based geometry sketcher for blender

Geometry Sketcher Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like

1.7k Jan 02, 2023
Simple CLI for Google Earth Engine Uploads

geeup: Simple CLI for Earth Engine Uploads with Selenium Support This tool came of the simple need to handle batch uploads of both image assets to col

Samapriya Roy 79 Nov 26, 2022
Interactive Maps with Geopandas

Create Interactive maps 🗺️ with your geodataframe Geopatra extends geopandas for interactive mapping and attempts to wrap the goodness of amazing map

sangarshanan 46 Aug 16, 2022
Tool to display your current position and angle above your radar

🛠 Tool to display your current position and angle above your radar. As a response to the CS:GO Update on 1.2.2022, which makes cl_showpos a cheat-pro

Miko 6 Jan 04, 2023
An API built to format given addresses using Python and Flask.

An API built to format given addresses using Python and Flask. About The API returns properly formatted data, i.e. removing duplicate fields, distingu

1 Feb 27, 2022
A bot that tweets info and location map for new bicycle parking added to OpenStreetMap within a GeoJSON boundary.

Bike parking tweepy bot app A twitter bot app that searches for bicycle parking added to OpenStreetMap. Relies on AWS Lambda/S3, Python3, Tweepy, Flas

Angelo Trivisonno 1 Dec 19, 2021
Yet Another Time Series Model

Yet Another Timeseries Model (YATSM) master v0.6.x-maintenance Build Coverage Docs DOI | About Yet Another Timeseries Model (YATSM) is a Python packag

Chris Holden 60 Sep 13, 2022
Advanced raster and geometry manipulations

buzzard In a nutshell, the buzzard library provides powerful abstractions to manipulate together images and geometries that come from different kind o

Earthcube Lab 30 Jun 20, 2022
Create Siege configuration files from Cloud Optimized GeoTIFF.

cogeo-siege Documentation: Source Code: https://github.com/developmentseed/cogeo-siege Description Create siege configuration files from Cloud Optimiz

Development Seed 3 Dec 01, 2022
h3-js provides a JavaScript version of H3, a hexagon-based geospatial indexing system.

h3-js The h3-js library provides a pure-JavaScript version of the H3 Core Library, a hexagon-based geographic grid system. It can be used either in No

Uber Open Source 648 Jan 07, 2023
ArcGIS Python Toolbox for WhiteboxTools

WhiteboxTools-ArcGIS ArcGIS Python Toolbox for WhiteboxTools. This repository is related to the ArcGIS Python Toolbox for WhiteboxTools, which is an A

Qiusheng Wu 190 Dec 30, 2022
geemap - A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and ipywidgets.

A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and folium

Qiusheng Wu 2.4k Dec 30, 2022
Centroids as a Service

Centroids! This application reads a valid geojson FeatureCollection and returns a valid geojson FeatureColleciton of centroids. In the output: All pro

Lyzi Diamond 20 Aug 29, 2021
Read and write rasters in parallel using Rasterio and Dask

dask-rasterio dask-rasterio provides some methods for reading and writing rasters in parallel using Rasterio and Dask arrays. Usage Read a multiband r

Dymaxion Labs 85 Aug 30, 2022
A proof-of-concept jupyter extension which converts english queries into relevant python code

Text2Code for Jupyter notebook A proof-of-concept jupyter extension which converts english queries into relevant python code. Blog post with more deta

DeepKlarity 2.1k Dec 29, 2022
Python bindings and utilities for GeoJSON

geojson This Python library contains: Functions for encoding and decoding GeoJSON formatted data Classes for all GeoJSON Objects An implementation of

Jazzband 765 Jan 06, 2023
Enable geospatial data mining through Google Earth Engine in Grasshopper 3D, via its most recent Hops component.

AALU_Geo Mining This repository is produced for a masterclass at the Architectural Association Landscape Urbanism programme. Requirements Rhinoceros (

4 Nov 16, 2022
framework for large-scale SAR satellite data processing

pyroSAR A Python Framework for Large-Scale SAR Satellite Data Processing The pyroSAR package aims at providing a complete solution for the scalable or

John Truckenbrodt 389 Dec 21, 2022
pure-Python (Numpy optional) 3D coordinate conversions for geospace ecef enu eci

Python 3-D coordinate conversions Pure Python (no prerequistes beyond Python itself) 3-D geographic coordinate conversions and geodesy. API similar to

Geospace code 292 Dec 29, 2022