Color correction plugin for rasterio

Overview

rio-color

Build Status Coverage Status

A rasterio plugin for applying basic color-oriented image operations to geospatial rasters.

Goals

  • No heavy dependencies: rio-color is purposefully limited in scope to remain lightweight
  • Use the image structure: By iterating over the internal blocks of the input image, we keep memory usage low and predictable while gaining the ability to
  • Use multiple cores: thanks to rio-mucho
  • Retain all the GeoTIFF info and TIFF structure: nothing is lost. A GeoTIFF input → GeoTIFF output with the same georeferencing, internal tiling, compression, nodata values, etc.
  • Efficient colorspace conversions: the intensive math is written in highly optimized C functions and for use with scalars and numpy arrays.
  • CLI and Python module: accessing the functionality as a python module that can act on in-memory numpy arrays opens up new opportunities for composing this with other array operations without using intermediate files.

Operations

Gamma adjustment adjusts RGB values according to a power law, effectively brightening or darkening the midtones. It can be very effective in satellite imagery for reducing atmospheric haze in the blue and green bands.

Sigmoidal contrast adjustment can alter the contrast and brightness of an image in a way that matches human's non-linear visual perception. It works well to increase contrast without blowing out the very dark shadows or already-bright parts of the image.

Saturation can be thought of as the "colorfulness" of a pixel. Highly saturated colors are intense and almost cartoon-like, low saturation is more muted, closer to black and white. You can adjust saturation independently of brightness and hue but the data must be transformed into a different color space.

animated

Examples

Sigmoidal

Contrast

sigmoidal_contrast

Bias

sigmoidal_bias

Gamma

Red

gamma_red

Green

gamma_green

Blue

gamma_blue

Saturation

saturation

Combinations of operations

combos

Install

We highly recommend installing in a virtualenv. Once activated,

pip install -U pip
pip install rio-color

Or if you want to install from source

git checkout https://github.com/mapbox/rio-color.git
cd rio-color
pip install -U pip
pip install -r requirements-dev.txt
pip install -e .

Python API

rio_color.operations

The following functions accept and return numpy ndarrays. The arrays are assumed to be scaled 0 to 1. In some cases, the input array is assumed to be in the RGB colorspace.

All arrays use rasterio ordering with the shape as (bands, columns, rows). Be aware that other image processing software may use the (columns, rows, bands) axis order.

  • sigmoidal(arr, contrast, bias)
  • gamma(arr, g)
  • saturation(rgb, proportion)
  • simple_atmo(rgb, haze, contrast, bias)

The rio_color.operations.parse_operations function takes an operations string and returns a list of python functions which can be applied to an array.

ops = "gamma b 1.85, gamma rg 1.95, sigmoidal rgb 35 0.13, saturation 1.15"

assert arr.shape[0] == 3
assert arr.min() >= 0
assert arr.max() <= 1

for func in parse_operations(ops):
    arr = func(arr)

This provides a tiny domain specific language (DSL) to allow you to compose ordered chains of image manipulations using the above operations. For more information on operation strings, see the rio color command line help.

rio_color.colorspace

The colorspace module provides functions for converting scalars and numpy arrays between different colorspaces.

>>> from rio_color.colorspace import ColorSpace as cs  # enum defining available color spaces
>>> from rio_color.colorspace import convert, convert_arr
>>> convert_arr(array, src=cs.rgb, dst=cs.lch) # for arrays
...
>>> convert(r, g, b, src=cs.rgb, dst=cs.lch)  # for scalars
...
>>> dict(cs.__members__)  # can convert to/from any of these color spaces
{
 'rgb': <ColorSpace.rgb: 0>,
 'xyz': <ColorSpace.xyz: 1>,
 'lab': <ColorSpace.lab: 2>,
 'lch': <ColorSpace.lch: 3>,
 'luv': <ColorSpace.luv: 4>
 }

Command Line Interface

Rio color provides two command line interfaces:

rio color

A general-purpose color correction tool to perform gamma, contrast and saturation adjustments.

The advantages over Imagemagick convert: rio color is geo-aware, retains the profile of the source image, iterates efficiently over interal tiles and can use multiple cores.

Usage: rio color [OPTIONS] SRC_PATH DST_PATH OPERATIONS...

  Color correction

  Operations will be applied to the src image in the specified order.

  Available OPERATIONS include:

      "gamma BANDS VALUE"
          Applies a gamma curve, brightening or darkening midtones.
          VALUE > 1 brightens the image.

      "sigmoidal BANDS CONTRAST BIAS"
          Adjusts the contrast and brightness of midtones.
          BIAS > 0.5 darkens the image.

      "saturation PROPORTION"
          Controls the saturation in LCH color space.
          PROPORTION = 0 results in a grayscale image
          PROPORTION = 1 results in an identical image
          PROPORTION = 2 is likely way too saturated

  BANDS are specified as a single arg, no delimiters

      `123` or `RGB` or `rgb` are all equivalent

  Example:

      rio color -d uint8 -j 4 input.tif output.tif \
          gamma 3 0.95, sigmoidal rgb 35 0.13


Options:
  -j, --jobs INTEGER              Number of jobs to run simultaneously, Use -1
                                  for all cores, default: 1
  -d, --out-dtype [uint8|uint16]  Integer data type for output data, default:
                                  same as input
  --co NAME=VALUE                 Driver specific creation options.See the
                                  documentation for the selected output driver
                                  for more information.
  --help                          Show this message and exit.

Example:

$ rio color -d uint8 -j 4 rgb.tif test.tif \
    gamma G 1.85 gamma B 1.95 sigmoidal RGB 35 0.13 saturation 1.15

screen shot 2016-02-17 at 12 18 47 pm

rio atmos

Provides a higher-level tool for general atmospheric correction of satellite imagery using a proven set of operations to adjust for haze.

Usage: rio atmos [OPTIONS] SRC_PATH DST_PATH

  Atmospheric correction

Options:
  -a, --atmo FLOAT                How much to dampen cool colors, thus cutting
                                  through haze. 0..1 (0 is none), default:
                                  0.03.
  -c, --contrast FLOAT            Contrast factor to apply to the scene.
                                  -infinity..infinity(0 is none), default: 10.
  -b, --bias FLOAT                Skew (brighten/darken) the output. Lower
                                  values make it brighter. 0..1 (0.5 is none),
                                  default: 0.15
  -d, --out-dtype [uint8|uint16]  Integer data type for output data, default:
                                  same as input
  --as-color                      Prints the equivalent rio color command to
                                  stdout.Does NOT run either command, SRC_PATH
                                  will not be created
  -j, --jobs INTEGER              Number of jobs to run simultaneously, Use -1
                                  for all cores, default: 1
  --co NAME=VALUE                 Driver specific creation options.See the
                                  documentation for the selected output driver
                                  for more information.
  --help                          Show this message and exit.
Owner
Mapbox
Mapbox is the location data platform for mobile and web applications. We're changing the way people move around cities and explore our world.
Mapbox
pure-Python (Numpy optional) 3D coordinate conversions for geospace ecef enu eci

Python 3-D coordinate conversions Pure Python (no prerequistes beyond Python itself) 3-D geographic coordinate conversions and geodesy. API similar to

Geospace code 292 Dec 29, 2022
A Python package for delineating nested surface depressions from digital elevation data.

Welcome to the lidar package lidar is Python package for delineating the nested hierarchy of surface depressions in digital elevation models (DEMs). I

Qiusheng Wu 166 Jan 03, 2023
A bot that tweets info and location map for new bicycle parking added to OpenStreetMap within a GeoJSON boundary.

Bike parking tweepy bot app A twitter bot app that searches for bicycle parking added to OpenStreetMap. Relies on AWS Lambda/S3, Python3, Tweepy, Flas

Angelo Trivisonno 1 Dec 19, 2021
Example of animated maps in matplotlib + geopandas using entire time series of congressional district maps from UCLA archive. rendered, interactive version below

Example of animated maps in matplotlib + geopandas using entire time series of congressional district maps from UCLA archive. rendered, interactive version below

Apoorva Lal 5 May 18, 2022
Introduction to Geospatial Analysis in Python

Introduction to Geospatial Analysis in Python This repository is in support of a talk on geospatial data. Data To recreate all of the examples, the da

Dillon Gardner 6 Oct 19, 2022
Daily social mapping project in November 2021. Maps made using PyGMT whenever possible.

Daily social mapping project in November 2021. Maps made using PyGMT whenever possible.

Wei Ji 20 Nov 24, 2022
Digital Earth Australia notebooks and tools repository

Repository for Digital Earth Australia Jupyter Notebooks: tools and workflows for geospatial analysis with Open Data Cube and xarray

Geoscience Australia 335 Dec 24, 2022
GeoNode is an open source platform that facilitates the creation, sharing, and collaborative use of geospatial data.

Table of Contents What is GeoNode? Try out GeoNode Install Learn GeoNode Development Contributing Roadmap Showcase Most useful links Licensing What is

GeoNode Development Team 1.2k Dec 26, 2022
Manipulation and analysis of geometric objects

Shapely Manipulation and analysis of geometric objects in the Cartesian plane. Shapely is a BSD-licensed Python package for manipulation and analysis

3.1k Jan 03, 2023
Constraint-based geometry sketcher for blender

Geometry Sketcher Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like

1.7k Jan 02, 2023
Construct and use map tile grids in different projection.

Morecantile +-------------+-------------+ ymax | | | | x: 0 | x: 1 | | y: 0 | y: 0

Development Seed 67 Dec 23, 2022
Software for Advanced Spatial Econometrics

GeoDaSpace Software for Advanced Spatial Econometrics GeoDaSpace current version 1.0 (32-bit) Development environment: Mac OSX 10.5.x (32-bit) wxPytho

GeoDa Center 38 Jan 03, 2023
Open Data Cube analyses continental scale Earth Observation data through time

Open Data Cube Core Overview The Open Data Cube Core provides an integrated gridded data analysis environment for decades of analysis ready earth obse

Open Data Cube 410 Dec 13, 2022
Python package for earth-observing satellite data processing

Satpy The Satpy package is a python library for reading and manipulating meteorological remote sensing data and writing it to various image and data f

PyTroll 882 Dec 27, 2022
Client library for interfacing with USGS datasets

USGS API USGS is a python module for interfacing with the US Geological Survey's API. It provides submodules to interact with various endpoints, and c

Amit Kapadia 104 Dec 30, 2022
A utility to search, download and process Landsat 8 satellite imagery

Landsat-util Landsat-util is a command line utility that makes it easy to search, download, and process Landsat imagery. Docs For full documentation v

Development Seed 681 Dec 07, 2022
geobeam - adds GIS capabilities to your Apache Beam and Dataflow pipelines.

geobeam adds GIS capabilities to your Apache Beam pipelines. What does geobeam do? geobeam enables you to ingest and analyze massive amounts of geospa

Google Cloud Platform 61 Nov 08, 2022
The geospatial toolkit for redistricting data.

maup maup is the geospatial toolkit for redistricting data. The package streamlines the basic workflows that arise when working with blocks, precincts

Metric Geometry and Gerrymandering Group 60 Dec 05, 2022
LEOGPS - Satellite Navigation with GPS on Python!

LEOGPS is an open-source Python software which performs relative satellite navigation between two formation flying satellites, with the objective of high accuracy relative positioning. Specifically,

Samuel Low 50 Dec 13, 2022
FDTD simulator that generates s-parameters from OFF geometry files using a GPU

Emport Overview This repo provides a FDTD (Finite Differences Time Domain) simulator called emport for solving RF circuits. Emport outputs its simulat

4 Dec 15, 2022