A ready-to-use curated list of Spectral Indices for Remote Sensing applications.

Overview

Awesome Spectral Indices

A ready-to-use curated list of Spectral Indices for Remote Sensing applications.

Awesome Awesome Spectral Indices Tests Documentation DOI GitHub Sponsors Buy me a coffee Ko-fi Twitter Black


GitHub: https://github.com/davemlz/awesome-ee-spectral-indices

Documentation: https://awesome-ee-spectral-indices.readthedocs.io/


Spectral Indices

The ready-to-use curated list of spectral indices (check the list here) for remote sensing applications is presented here. The list is available in two formats (CSV, JSON) so it can be easily used in any programming language.

Attributes

Each item of the list has the following attributes:

  • short_name: Short name of the index (e.g. "NDWI").
  • long_name: Long name of the index (e.g. "Normalized Difference Water Index").
  • formula: Expression/formula of the index (e.g. "(G - N)/(G + N)").
  • bands: List of required bands/parameters for the index computation (e.g. ["N","G"]).
  • reference: Link to the index reference/paper/doi (e.g. "https://doi.org/10.1080/01431169608948714").
  • type: Type/application of the index (e.g. "water").
  • date_of_addition: Date of addition to the list (e.g. "2021-04-07").
  • contributor: GitHub user link of the contributor (e.g. "https://github.com/davemlz").

Expressions

The formula of the index is presented as a string/expression (e.g. "(N - R)/(N + R)") that can be easily evaluated. The parameters used in the expression for each index follow this standard:

Description Standard Sentinel-2 Landsat-8 Landsat-457 MODIS
Aerosols A B1 B1
Blue B B2 B2 B1 B3
Green G B3 B3 B2 B4
Red R B4 B4 B3 B1
Red Edge 1 RE1 B5
Red Edge 2 RE2 B6
Red Edge 3 RE3 B7
Red Edge 4 RE4 B8A
NIR N B8 B5 B4 B2
SWIR 1 S1 B11 B6 B5 B6
SWIR 2 S2 B12 B7 B7 B7
Thermal 1 T1 B10 B6
Thermal 2 T2 B11

Additional index parameters also follow a standard:

  • g: Gain factor (e.g. Used for EVI).
  • L: Canopy background adjustment (e.g. Used for SAVI and EVI).
  • C1: Coefficient 1 for the aerosol resistance term (e.g. Used for EVI).
  • C2: Coefficient 2 for the aerosol resistance term (e.g. Used for EVI).
  • cexp: Exponent used for OCVI.
  • nexp: Exponent used for GDVI.
  • alpha: Weighting coefficient used for WDRVI.
  • sla: Soil line slope.
  • slb: Soil line intercept.

The kernel indices are constructed using a special type of parameters:

  • kAB: Kernel of bands/parameters A and B (e.g. kNR means k(N,R), where k is the kernel function).
  • p: Kernel degree (used for the polynomial kernel).
  • c: Free parameter that trades off the influence of higher-order versus lower-order terms (used for the polynomial kernel).

Used by

JavaScript

  • spectral: Awesome Spectral Indices for the Google Earth Engine JavaScript API (Code Editor).

Python

  • eemont: A python package that extends Google Earth Engine.
  • eeExtra: A ninja Python package behind rgee, rgeeExtra and eemont.
  • spyndex: Awesome Spectral Indices in Python.

R

  • rgeeExtra: High-level functions to process spatial and simple Earth Engine objects. Popular Third-party GEE algorithms are re-coded from Javascript and Python to R.

Spectral Indices by Type

Vegetation 🌱

A

  • ARVI: Atmospherically Resistant Vegetation Index.
  • ATSAVI: Adjusted Transformed Soil-Adjusted Vegetation Index.

B

  • BNDVI: Blue Normalized Difference Vegetation Index.

C

  • CIG: Chlorophyll Index Green.
  • CIRE: Chlorophyll Index Red Edge.
  • CVI: Chlorophyll Vegetation Index.

D

  • DVI: Difference Vegetation Index.

E

  • EVI: Enhanced Vegetation Index.
  • EVI2: Two-Band Enhanced Vegetation Index.
  • ExG: Excess Green Index.

G

  • GARI: Green Atmospherically Resistant Vegetation Index.
  • GBNDVI: Green-Blue Normalized Difference Vegetation Index.
  • GDVI: Generalized Difference Vegetation Index.
  • GEMI: Global Environment Monitoring Index.
  • GLI: Green Leaf Index.
  • GNDVI: Green Normalized Difference Vegetation Index.
  • GRNDVI: Green-Red Normalized Difference Vegetation Index.
  • GVMI: Global Vegetation Moisture Index.

I

  • IRECI: Inverted Red-Edge Chlorophyll Index.

M

  • MCARI: Modified Chlorophyll Absorption in Reflectance Index.
  • MCARI1: Modified Chlorophyll Absorption in Reflectance Index 1.
  • MCARI2: Modified Chlorophyll Absorption in Reflectance Index 2.
  • MGRVI: Modified Green Red Vegetation Index.
  • MNDVI: Modified Normalized Difference Vegetation Index.
  • MNLI: Modified Non-Linear Vegetation Index.
  • MSAVI: Modified Soil-Adjusted Vegetation Index.
  • MSR: Modified Simple Ratio.
  • MTCI: MERIS Terrestrial Chlorophyll Index.
  • MTVI1: Modified Triangular Vegetation Index 1.
  • MTVI2: Modified Triangular Vegetation Index 2.

N

  • NDREI: Normalized Difference Red Edge Index.
  • NDVI: Normalized Difference Vegetation Index.
  • NDYI: Normalized Difference Yellowness Index.
  • NGRDI: Normalized Green Red Difference Index.
  • NLI: Non-Linear Vegetation Index.
  • NRFIg: Normalized Rapeseed Flowering Index Green.
  • NRFIr: Normalized Rapeseed Flowering Index Red.

O

  • OCVI: Optimized Chlorophyll Vegetation Index.
  • OSAVI: Optimized Soil-Adjusted Vegetation Index.

R

  • RDVI: Renormalized Difference Vegetation Index.
  • RVI: Ratio Vegetation Index.

S

  • S2REP: Sentinel-2 Red-Edge Position.
  • SARVI: Soil Adjusted and Atmospherically Resistant Vegetation Index.
  • SAVI: Soil-Adjusted Vegetation Index.
  • SAVI2: Soil-Adjusted Vegetation Index 2.
  • SeLI: Sentinel-2 LAI Green Index.
  • SIPI: Structure Insensitive Pigment Index.

T

  • TCARI: Transformed Chlorophyll Absorption in Reflectance Index.
  • TCI: Triangular Chlorophyll Index.
  • TGI: Triangular Greenness Index.
  • TRRVI: Transformed Red Range Vegetation Index.
  • TSAVI: Transformed Soil-Adjusted Vegetation Index.
  • TVI: Triangular Vegetation Index.

V

  • VARI: Visible Atmospherically Resistant Index.

W

  • WDRVI: Wide Dynamic Range Vegetation Index.
  • WDVI: Weighted Difference Vegetation Index.

Burn 🔥

B

  • BAI: Burned Area Index.
  • BAIS2: Burned Area Index for Sentinel 2.

C

  • CSIT: Char Soil Index Thermal.

N

  • NBR: Normalized Burn Ratio.
  • NBRT: Normalized Burn Ratio Thermal.
  • NDVIT: Normalized Difference Vegetation Index Thermal.

S

  • SAVIT: Soil-Adjusted Vegetation Index Thermal.

Water 🌊

  • MNDWI: Modified Normalized Difference Water Index.
  • NDWI: Normalized Difference Water Index.

Snow

  • NDSI: Normalized Difference Snow Index.

Drought 🏜️

  • NDDI: Normalized Difference Drought Index.
  • NMDI: Normalized Multi‐band Drought Index.

Urban 🏙️

  • EBBI: Enhanced Built-Up and Bareness Index.
  • NDBaI: Normalized Difference Bareness Index.
  • NDBI: Normalized Difference Built-Up Index.
  • NHFD: Non-Homogeneous Feature Difference.

Kernel 🎯

  • kEVI: Kernel Enhanced Vegetation Index.
  • kNDVI: Kernel Normalized Difference Vegetation Index.
  • kRVI: Kernel Ratio Vegetation Index.
  • kVARI: Kernel Visible Atmospherically Resistant Index.

List

Check the full list of spectral indices with their formulas here.

Download Raw Files

You can download or clone the repository:

git clone https://github.com/davemlz/awesome-ee-spectral-indices.git

Or you can download the single files here (right-click > Save link as...):

Credits

Comments
  • NEW INDEX: SBI

    NEW INDEX: SBI

    SBI=SpectralIndex(
        short_name='SBI',
        long_name='Soil Brightness Index',
        formula='(R**2 + N**2)**0.5',
        reference='hal-03207299',
        type='vegetation',
        date_of_addition='2022-10-26',
        contributor="https://github.com/remi-braun"
    )
    

    The role of the brightness index is to identify the reflectance of soil and to highlight the vegetal cover of bare areas. Bannari et al. 1996; Soufiane Maimouni and Bannari 2011

    NEW INDEX 
    opened by remi-braun 8
  • Filter indice based on satellites

    Filter indice based on satellites

    Hi, Is there a way to filter out indices that aren't supported by a particular satellite? For example, red edge-related indices can't be calculated with Landsat and will return error like below. It would be nice to filter out indices that aren't supported for a predefined list of indices. Cheers, Daniel EEException: Collection.first: Error in map(ID=LC09_090079_20211106): Image.select: Pattern 'NDREI' did not match any bands.

    opened by Daniel-Trung-Nguyen 7
  • NEW INDEX: RDI

    NEW INDEX: RDI

    RDI=SpectralIndex(
        short_name='RDI',
        long_name='Ratio Drought Index',
        formula='S2 / N',
        reference='https://www.indexdatabase.de/db/i-single.php?id=71',
        type='vegetation',
        date_of_addition='2022-10-26',
        contributor="https://github.com/remi-braun"
    )
    

    See the index database page: https://www.indexdatabase.de/db/i-single.php?id=71

    NEW INDEX 
    opened by remi-braun 4
  • NEW INDEX: DSWI

    NEW INDEX: DSWI

    DSWI=SpectralIndex(
        short_name='DSWI',
        long_name='Disease water stress index',
        formula='(N + G) / (S1 + R)',
        reference='10.1016/j.rse.2004.11.012',
        type='vegetation',
        date_of_addition='2022-10-26',
        contributor="https://github.com/remi-braun"
    )
    

    See the index database page: https://www.indexdatabase.de/db/i-single.php?id=106

    NEW INDEX 
    opened by remi-braun 3
  • QST: When is used N2 rather than N ?

    QST: When is used N2 rather than N ?

    Hello,

    I was wondering when the band N2 is used rather than N. Ideed, for example for NDREI the formula is: (N - RE1) / (N + RE1) even if the RE1 band is at 20m gsd. Shouldn't it be more logical to use N2 which is 20m native and has a better spectral resolution ?

    (I'm assuming that N2 == N for other satellites than Sentinel-2)

    opened by remi-braun 2
  • NEW INDEX: WVSI

    NEW INDEX: WVSI

    MXSI=SpectralIndex(
        short_name='WVSI',
        long_name='WorldView Soil Index',
        formula='(Y - G) / (Y + G)',
        reference='https://resources.maxar.com/optical-imagery/multispectral-reference-guide',
        type='urban',
        date_of_addition='2022-10-31',
        contributor="https://github.com/remi-braun"
    )
    

    Maxar Built-up Index: https://resources.maxar.com/optical-imagery/multispectral-reference-guide Useful for detecting and differentiating exposed soil

    NEW INDEX 
    opened by remi-braun 2
  • NEW INDEX: MXBI

    NEW INDEX: MXBI

    MXBI=SpectralIndex(
        short_name='MXBI',
        long_name='Maxar Built-up Index',
        formula='(RE1 - A) / (RE1 + A)',
        reference='https://resources.maxar.com/optical-imagery/multispectral-reference-guide',
        type='urban',
        date_of_addition='2022-10-26',
        contributor="https://github.com/remi-braun"
    )
    

    Maxar Built-up Index: https://resources.maxar.com/optical-imagery/multispectral-reference-guide Useful for detecting impervious surfaces such as buildings and roads

    Note that other Maxar indices exist, but they need a YELLOW and a WATER VAPOUR band

    NEW INDEX 
    opened by remi-braun 2
  • NEW INDEX: WI

    NEW INDEX: WI

    WI=SpectralIndex(
        short_name='WI',
        long_name='Water Index',
        formula='1.7204 + 171 * G + 3 * R - 70 * N - 45 * S1 - 71 * S2',
        reference='10.1016/j.rse.2015.12.055',
        type='water',
        date_of_addition='2022-10-26',
        contributor="https://github.com/remi-braun"
    )
    

    Could also be named WI2015 😄

    NEW INDEX 
    opened by remi-braun 2
  • OSAVI formula

    OSAVI formula

    Hello,

    I don't know if I'm wrong, but the OSAVI formula from IDB - Index Database is different from yours 😅

    Basically, there is an added coefficient in (1+ L) with L = 0.16

    opened by remi-braun 2
  • NEW INDEX: NDMI

    NEW INDEX: NDMI

    Please, complete the following information:

    NDMI=SpectralIndex(
        short_name='NDMI',
        long_name='Normalized Difference Moisture Index ',
        formula='(N - S1)/(N + S1)',
        reference='https://doi.org/10.1016/S0034-4257(01)00318-2',
        type='vegetation',
        date_of_addition='2021-12-01',
        contributor="https://github.com/bpurinton"
    )
    

    Example:

    SeLI=SpectralIndex(
        short_name='SeLI',
        long_name='Sentinel-2 LAI Green Index',
        formula='(RE4 - RE1) / (RE4 + RE1)',
        reference='https://doi.org/10.3390/s19040904',
        type='vegetation',
        date_of_addition='2021-04-08',
        contributor="https://github.com/davemlz"
    )
    

    This is a common index that is also listed on the Landsat pages: https://www.usgs.gov/core-science-systems/nli/landsat/normalized-difference-moisture-index

    NEW INDEX 
    opened by bpurinton 2
  • NEW INDEX: GVMI

    NEW INDEX: GVMI

    GVMI=SpectralIndex(
        short_name='GVMI',
        long_name='Global Vegetation Moisture Index',
        formula='((N + 0.1) - (S2 + 0.02) ) / ((N + 0.1) + (S2 + 0.02))',
        reference='10.1016/s0034-4257(02)00037-8',
        type='vegetation',
        date_of_addition='2022-10-26',
        contributor="https://github.com/remi-braun"
    )
    

    See also the index database page: https://www.indexdatabase.de/db/i-single.php?id=372

    NEW INDEX 
    opened by remi-braun 1
  • Add number of citations via CrossRef

    Add number of citations via CrossRef

    I wrote a short script to lookup the number of citations for each of the papers you have as a reference for each index and had two problems:

    1. Crossref can't find the citation you use for NWI (although I think this is Crossref's problem, not your's)
    2. You reference "Fire intensity, fire severity and burn severity: A brief review and suggested usage" for NBR but the original citation should be "Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity" which has more citations, which makes a difference for me (as well as being the original non-grey literature citation for NBR.

    I can send the (simple) code for adding the #of citations for each reference if you like. I really like the fact that Awesome Spatial Indices has the reference included.

    enhancement 
    opened by lefsky 1
  • NEW INDEX: SCI

    NEW INDEX: SCI

    SCI=SpectralIndex(
        short_name='SBI',
        long_name='Soil Cuirass Index',
        formula='3*G - R - 100',
        reference='hal-03207299',
        type='vegetation',
        date_of_addition='2022-10-26',
        contributor="https://github.com/remi-braun"
    )
    

    It aims is to dissociate vegetated coverings from mineralized surfaces Okaingni et al. 2010; Stephane et al. 2016

    NEW INDEX original source required 
    opened by remi-braun 4
  • NEW INDEX: SRSWIR

    NEW INDEX: SRSWIR

    SRSWIR=SpectralIndex(
        short_name='SRSWIR',
        long_name='Simple Ratio SWIR16/SWIR21 Clay Minerals',
        formula='S1 / S2',
        reference='https://www.indexdatabase.de/db/i-single.php?id=204',
        type='burn',
        date_of_addition='2022-10-26',
        contributor="https://github.com/remi-braun"
    )
    

    See the index database page: https://www.indexdatabase.de/db/i-single.php?id=204

    Real type is geology, but can be used for burn

    NEW INDEX original source required 
    opened by remi-braun 6
  • NEW INDEX: TCWET

    NEW INDEX: TCWET

    TCWET=SpectralIndex(
        short_name='TCWET',
        long_name='Tasseled Cap Wetness',
        formula='0.1509 *B + 0.1973 * G + 0.3279 * R + 0.3406 * N + 0.7112 * S1 + 0.4572 * S2',
        reference='10.1109/tgrs.1984.350619',
        type='vegetation',
        date_of_addition='2022-10-26',
        contributor="https://github.com/remi-braun"
    )
    

    See also the wikipedia page: https://en.wikipedia.org/wiki/Tasseled_cap_transformation And the index database page: https://www.indexdatabase.de/db/r-single.php?id=723

    NEW INDEX 
    opened by remi-braun 1
  • NEW INDEX: TCGRE

    NEW INDEX: TCGRE

    TCGRE=SpectralIndex(
        short_name='TCGRE',
        long_name='Tasseled Cap Greenness',
        formula='0.2848 *B + 0.2435 * G + 0.5436 * R + 0.7243 * N + 0.0840 * S1 + 0.1800 * S2',
        reference='10.1109/tgrs.1984.350619',
        type='vegetation',
        date_of_addition='2022-10-26',
        contributor="https://github.com/remi-braun"
    )
    

    See also the wikipedia page: https://en.wikipedia.org/wiki/Tasseled_cap_transformation And the index database page: https://www.indexdatabase.de/db/r-single.php?id=723

    NEW INDEX 
    opened by remi-braun 1
  • NEW INDEX: TCBRI

    NEW INDEX: TCBRI

    TCBRI=SpectralIndex(
        short_name='TCBRI',
        long_name='Tasseled Cap Brightness',
        formula='0.3037 *B + 0.2793 * G + 0.4743 * R + 0.5585 * N + 0.5082 * S1 + 0.1863 * S2',
        reference='10.1109/tgrs.1984.350619',
        type='vegetation',
        date_of_addition='2022-10-26',
        contributor="https://github.com/remi-braun"
    )
    

    See also the wikipedia page: https://en.wikipedia.org/wiki/Tasseled_cap_transformation And the index database page: https://www.indexdatabase.de/db/r-single.php?id=723

    NEW INDEX 
    opened by remi-braun 2
Releases(0.3.0)
  • 0.3.0(Nov 21, 2022)

    Awesome Spectral Indices v0.3.0 :rocket: :artificial_satellite: :seedling:

    Improvements

    • The soil application domain was created.
    • The following Spectral Indices were moved to the soil application domain:
      • BI: Bare Soil Index.
      • BaI: Bareness Index.
      • DBSI: Dry Bareness Index.
      • EMBI: Enhanced Modified Bare Soil Index.
      • MBI: Modified Bare Soil Index.
      • NBLI: Normalized Difference Bare Land Index.
      • NDBaI: Normalized Difference Bareness Index.
      • NDSoI: Normalized Difference Soil Index.
      • NSDS: Normalized Shortwave Infrared Difference Soil-Moisture.
      • NSDSI1: Normalized Shortwave-Infrared Difference Bare Soil Moisture Index 1.
      • NSDSI2: Normalized Shortwave-Infrared Difference Bare Soil Moisture Index 2.
      • NSDSI3: Normalized Shortwave-Infrared Difference Bare Soil Moisture Index 3.

    New Features

    The following Spectral Indices were added to the list:

    Vegetation :seedling:

    • DSI: Drought Stress Index.
    • DSWI1: Disease-Water Stress Index 1.
    • DSWI2: Disease-Water Stress Index 2.
    • DSWI3: Disease-Water Stress Index 3.
    • DSWI4: Disease-Water Stress Index 4.
    • DSWI5: Disease-Water Stress Index 5.

    Water :ocean:

    • NDCI: Normalized Difference Chlorophyll Index.
    • WI2015: Water Index 2015.

    Soil :desert:

    • BITM: Landsat TM-based Brightness Index.
    • BIXS: SPOT HRV XS-based Brightness Index.
    • NDSIWV: WorldView Normalized Difference Soil Index.
    • RI4XS: SPOT HRV XS-based Redness Index 4.
    Source code(tar.gz)
    Source code(zip)
  • 0.2.0(Oct 6, 2022)

    Awesome Spectral Indices v0.2.0 :rocket: :artificial_satellite: :seedling:

    Improvements

    • Band IDs for MODIS bands were corrected in the bands.py file.

    New Features

    The following Spectral Indices were added to the list:

    Vegetation :seedling:

    • SEVI: Shadow-Eliminated Vegetation Index.

    Burn :fire:

    • NBRplus: Normalized Burn Ratio Plus.
    • NBRSWIR: Normalized Burn Ratio SWIR.
    • NDSWIR: Normalized Difference SWIR.
    • NSTv1: NIR-SWIR-Temperature Version 1.
    • NSTv2: NIR-SWIR-Temperature Version 2.

    Water :ocean:

    • ANDWI: Augmented Normalized Difference Water Index.
    • NDTI: Normalized Difference Turbidity Index.
    • NDPonI: Normalized Difference Pond Index.
    • NSDSI1: Normalized Shortwave-Infrared Difference Bare Soil Moisture Index 1.
    • NSDSI2: Normalized Shortwave-Infrared Difference Bare Soil Moisture Index 2.
    • NSDSI3: Normalized Shortwave-Infrared Difference Bare Soil Moisture Index 3.

    Urban :cityscape:

    • BRBA: Band Ratio for Built-up Area.
    • NBAI: Normalized Built-up Area Index.
    • VIBI: Vegetation Index Built-up Index.
    Source code(tar.gz)
    Source code(zip)
  • 0.1.0(Jun 2, 2022)

    Awesome Spectral Indices v0.1.0 :rocket: :artificial_satellite: :seedling:

    Improvements

    • The platforms attribute was created for all indices.
    • The type attribute was replaced by the application_domain attribute.

    New Features

    The following Spectral Indices were added to the list:

    Burn :fire:

    • BAIM: Burned Area Index adapted to MODIS.
    • CSI: Char Soil Index.
    • NBRT2: Normalized Burn Ratio Thermal 2.
    • NBRT3: Normalized Burn Ratio Thermal 3.
    • MIRBI: Mid-Infrared Burn Index.
    • VI6T: VI6T Index.

    Water :ocean:

    • LSWI: Land Surface Water Index.
    • MLSWI26: Modified Land Surface Water Index (MODIS Bands 2 and 6).
    • MLSWI27: Modified Land Surface Water Index (MODIS Bands 2 and 7).
    • SWM: Sentinel Water Mask.

    Urban :cityscape:

    • BaI: Bareness Index.
    • DBI: Dry Built-Up Index.
    • DBSI: Dry Bareness Index.
    • EMBI: Enhanced Modified Bare Soil Index.
    • MBI: Modified Bare Soil Index.
    • NBLI: Normalized Difference Bare Land Index.
    • NBUI: New Built-Up Index.
    • NDISIb: Normalized Difference Impervious Surface Index Blue.
    • NDISIg: Normalized Difference Impervious Surface Index Green.
    • NDISImndwi: Normalized Difference Impervious Surface Index with MNDWI.
    • NDISIndwi: Normalized Difference Impervious Surface Index with NDWI.
    • NDISIr: Normalized Difference Impervious Surface Index Red.
    • NDSoI: Normalized Difference Soil Index.
    • NSDS: Normalized Shortwave Infrared Difference Soil-Moisture.
    • PISI: Perpendicular Impervious Surface Index.

    Radar :artificial_satellite:

    • DPDD: Dual-Pol Diagonal Distance.
    • NDPolI: Normalized Difference Polarization Index.
    • VDDPI: Vertical Dual De-Polarization Index.
    • VHVVD: VH-VV Difference.
    • VHVVP: VH-VV Product.
    • VHVVR: VH-VV Ratio.
    • VVVHD: VV-VH Difference.
    • VVVHR: VV-VH Ratio.
    • VVVHS: VV-VH Sum.
    Source code(tar.gz)
    Source code(zip)
  • 0.0.7(Apr 11, 2022)

    Awesome Spectral Indices v0.0.7 :rocket: :artificial_satellite: :seedling:

    Improvements

    • Drought indices were merged with Vegetation indices

    New Features

    The following Spectral Indices were added to the list:

    Vegetation :seedling:

    • ARI2: Anthocyanin Reflectance Index 2.
    • AVI: Advanced Vegetation Index.
    • ExGR: ExG - ExR Vegetation Index.
    • ExR: Excess Red Index.
    • GM1: Gitelson and Merzlyak Index 1.
    • GM2: Gitelson and Merzlyak Index 2.
    • GOSAVI: Green Optimized Soil Adjusted Vegetation Index.
    • GRVI: Green Ratio Vegetation Index.
    • GSAVI: Green Soil Adjusted Vegetation Index.
    • IAVI: New Atmospherically Resistant Vegetation Index.
    • IKAW: Kawashima Index.
    • IPVI: Infrared Percentage Vegetation Index.
    • mND705: Modified Normalized Difference (705, 750 and 445 nm).
    • MRBVI: Modified Red Blue Vegetation Index.
    • MSI: Moisture Stress Index.
    • mSR705: Modified Simple Ratio (705 and 445 nm).
    • ND705: Normalized Difference (705 and 750 nm).
    • NormG: Normalized Green.
    • NormNIR: Normalized NIR.
    • NormR: Normalized Red.
    • PSRI: Plant Senescing Reflectance Index.
    • RENDVI: Red Edge Normalized Difference Vegetation Index.
    • RGBVI: Red Green Blue Vegetation Index.
    • RGRI: Red-Green Ratio Index.
    • RI: Redness Index.
    • SI: Shadow Index.
    • SR: Simple Ratio.
    • SR2: Simple Ratio (800 and 550 nm).
    • SR3: Simple Ratio (860, 550 and 708 nm).
    • TDVI: Transformed Difference Vegetation Index.
    • TVI: Transformed Vegetation Index.

    Water :ocean:

    • MuWIR: Revised Multi-Spectral Water Index.
    • NDWIns: Normalized Difference Water Index with no Snow Cover and Glaciers.

    Urban :cityscape:

    • BI: Bare Soil Index.

    Snow :snowman_with_snow:

    • NBSIMS: Non-Binary Snow Index for Multi-Component Surfaces.
    • NDGlaI: Normalized Difference Glacier Index.
    • NDSII: Normalized Difference Snow Ice Index.
    • NDSInw: Normalized Difference Snow Index with no Water.

    Kernel :dart:

    • kIPVI: Kernel Infrared Percentage Vegetation Index.
    Source code(tar.gz)
    Source code(zip)
  • 0.0.6(Mar 6, 2022)

    Awesome Spectral Indices v0.0.6 :rocket: :artificial_satellite: :seedling:

    The following Spectral Indices were added to the list:

    Water

    • S2WI: Sentinel-2 Water Index.

    Urban

    • BLFEI: Built-Up Land Features Extraction Index.
    • IBI: Index-Based Built-Up Index.
    • UI: Urban Index.
    • VgNIRBI: Visible Green-Based Built-Up Index.
    • VrNIRBI: Visible Red-Based Built-Up Index.
    Source code(tar.gz)
    Source code(zip)
  • 0.0.5(Jan 31, 2022)

    Awesome Spectral Indices v0.0.5 :rocket: :artificial_satellite: :seedling:

    The following Spectral Indices were added to the list:

    Vegetation

    • BCC: Blue Chromatic Coordinate.
    • DVIplus: Difference Vegetation Index Plus.
    • FCVI: Fluorescence Correction Vegetation Index.
    • GCC: Green Chromatic Coordinate.
    • NDGI: Normalized Difference Greenness Index.
    • NDII: Normalized Difference Infrared Index.
    • NDPI: Normalized Difference Phenology Index.
    • NIRvH2: Hyperspectral Near-Infrared Reflectance of Vegetation.
    • RCC: Red Chromatic Coordinate.

    Water

    • MBWI: Multi-Band Water Index.
    • NDVIMNDWI: NDVI - MNDWI Model.
    • NWI: New Water Index.
    • WRI: Water Ratio Index.
    Source code(tar.gz)
    Source code(zip)
  • 0.0.4(Jan 16, 2022)

    Awesome Spectral Indices v0.0.4 :rocket: :artificial_satellite: :seedling:

    The following Spectral Indices were added to the list:

    Vegetation

    • AFRI1600: Aerosol Free Vegetation Index (1600 nm).
    • AFRI2100: Aerosol Free Vegetation Index (2100 nm).
    • NDMI: Normalized Difference Moisture Index.
    • NIRv: Near-Infrared Reflectance of Vegetation.
    • NIRvP: Near-Infrared Reflectance of Vegetation and Incoming PAR.

    RADAR

    • DpRVIHH: Dual-Polarized Radar Vegetation Index HH.
    • DpRVIVV: Dual-Polarized Radar Vegetation Index VV.
    • QpRVI: Quad-Polarized Radar Vegetation Index.
    • RFDI: Radar Forest Degradation Index.
    Source code(tar.gz)
    Source code(zip)
  • 0.0.3(Nov 8, 2021)

    Awesome Spectral Indices v0.0.3 :rocket: :artificial_satellite: :seedling:

    The following Spectral Indices were added to the list:

    Vegetation

    • MCARI705: Modified Chlorophyll Absorption in Reflectance Index (705 and 750 nm).
    • MCARIOSAVI: MCARI/OSAVI Ratio.
    • MCARIOSAVI705: MCARI/OSAVI Ratio (705 and 750 nm).
    • MSR705: Modified Simple Ratio (705 and 750 nm).
    • NDVI705: Normalized Difference Vegetation Index (705 and 750 nm).
    • REDSI: Red-Edge Disease Stress Index.
    • SR555: Simple Ratio (555 and 750 nm).
    • SR705: Simple Ratio (705 and 750 nm).
    • TCARIOSAVI: TCARI/OSAVI Ratio.
    • TCARIOSAVI705: TCARI/OSAVI Ratio (705 and 750 nm).
    Source code(tar.gz)
    Source code(zip)
  • 0.0.2(Sep 21, 2021)

    Awesome Spectral Indices 0.0.2 :rocket: :artificial_satellite: :seedling:

    The following Spectral Indices were added to the list:

    Vegetation

    • ARI: Anthocyanin Reflectance Index.
    • BWDRVI: Blue Wide Dynamic Range Vegetation Index.
    • IRECI: Inverted Red-Edge Chlorophyll Index.
    • NDYI: Normalized Difference Yellowness Index.
    • NRFIg: Normalized Rapeseed Flowering Index Green.
    • NRFIr: Normalized Rapeseed Flowering Index Red.
    • S2REP: Sentinel-2 Red-Edge Position.
    • SIPI: Structure Insensitive Pigment Index.
    • TRRVI: Transformed Red Range Vegetation Index.
    • TTVI: Transformed Triangular Vegetation Index.
    • VARI700: Visible Atmospherically Resistant Index (700 nm).
    • VI700: Vegetation Index (700 nm).
    • VIG: Vegetation Index Green.

    Burn

    • NBR2: Normalized Burn Ratio 2.

    Water

    • AWEInsh: Automated Water Extraction Index.
    • AWEIsh: Automated Water Extraction Index with Shadows Elimination.
    • WI1: Water Index 1.
    • WI2: Water Index 2.

    Snow

    • NDSII: Normalized Difference Snow Ice Index.
    • S3: S3 Snow Index.
    • SWI: Snow Water Index.

    Urban

    • EBBI: Enhanced Built-Up and Bareness Index.
    • NDBaI: Normalized Difference Bareness Index.
    • NHFD: Non-Homogeneous Feature Difference.
    Source code(tar.gz)
    Source code(zip)
  • 0.0.1(Sep 14, 2021)

    Awesome Spectral Indices 0.0.1 (First Release! :rocket: :artificial_satellite: :seedling: )

    The following Spectral Indices were added to the list:

    Vegetation

    • ARVI: Atmospherically Resistant Vegetation Index.
    • ATSAVI: Adjusted Transformed Soil-Adjusted Vegetation Index.
    • BNDVI: Blue Normalized Difference Vegetation Index.
    • CIG: Chlorophyll Index Green.
    • CIRE: Chlorophyll Index Red Edge.
    • CVI: Chlorophyll Vegetation Index.
    • DVI: Difference Vegetation Index.
    • EVI: Enhanced Vegetation Index.
    • EVI2: Two-Band Enhanced Vegetation Index.
    • ExG: Excess Green Index.
    • GARI: Green Atmospherically Resistant Vegetation Index.
    • GBNDVI: Green-Blue Normalized Difference Vegetation Index.
    • GDVI: Generalized Difference Vegetation Index.
    • GEMI: Global Environment Monitoring Index.
    • GLI: Green Leaf Index.
    • GNDVI: Green Normalized Difference Vegetation Index.
    • GRNDVI: Green-Red Normalized Difference Vegetation Index.
    • GVMI: Global Vegetation Moisture Index.
    • MCARI: Modified Chlorophyll Absorption in Reflectance Index.
    • MCARI1: Modified Chlorophyll Absorption in Reflectance Index 1.
    • MCARI2: Modified Chlorophyll Absorption in Reflectance Index 2.
    • MGRVI: Modified Green Red Vegetation Index.
    • MNDVI: Modified Normalized Difference Vegetation Index.
    • MNLI: Modified Non-Linear Vegetation Index.
    • MSAVI: Modified Soil-Adjusted Vegetation Index.
    • MSR: Modified Simple Ratio.
    • MTCI: MERIS Terrestrial Chlorophyll Index.
    • MTVI1: Modified Triangular Vegetation Index 1.
    • MTVI2: Modified Triangular Vegetation Index 2.
    • NDREI: Normalized Difference Red Edge Index.
    • NDVI: Normalized Difference Vegetation Index.
    • NGRDI: Normalized Green Red Difference Index.
    • NLI: Non-Linear Vegetation Index.
    • OCVI: Optimized Chlorophyll Vegetation Index.
    • OSAVI: Optimized Soil-Adjusted Vegetation Index.
    • RDVI: Renormalized Difference Vegetation Index.
    • RVI: Ratio Vegetation Index.
    • SARVI: Soil Adjusted and Atmospherically Resistant Vegetation Index.
    • SAVI: Soil-Adjusted Vegetation Index.
    • SAVI2: Soil-Adjusted Vegetation Index 2.
    • SeLI: Sentinel-2 LAI Green Index.
    • TCARI: Transformed Chlorophyll Absorption in Reflectance Index.
    • TCI: Triangular Chlorophyll Index.
    • TGI: Triangular Greenness Index.
    • TSAVI: Transformed Soil-Adjusted Vegetation Index.
    • TVI: Triangular Vegetation Index.
    • VARI: Visible Atmospherically Resistant Index.
    • WDRVI: Wide Dynamic Range Vegetation Index.
    • WDVI: Weighted Difference Vegetation Index.

    Burn

    • BAI: Burned Area Index.
    • BAIS2: Burned Area Index for Sentinel 2.
    • CSIT: Char Soil Index Thermal.
    • NBR: Normalized Burn Ratio.
    • NBRT: Normalized Burn Ratio Thermal.
    • NDVIT: Normalized Difference Vegetation Index Thermal.
    • SAVIT: Soil-Adjusted Vegetation Index Thermal.

    Water

    • MNDWI: Modified Normalized Difference Water Index.
    • NDWI: Normalized Difference Water Index.

    Snow

    • NDSI: Normalized Difference Snow Index.

    Drought

    • NDDI: Normalized Difference Drought Index.
    • NMDI: Normalized Multi‐band Drought Index.

    Urban

    • NDBI: Normalized Difference Built-Up Index.

    Kernel

    • kEVI: Kernel Enhanced Vegetation Index.
    • kNDVI: Kernel Normalized Difference Vegetation Index.
    • kRVI: Kernel Ratio Vegetation Index.
    • kVARI: Kernel Visible Atmospherically Resistant Index.
    Source code(tar.gz)
    Source code(zip)
Owner
David Montero Loaiza
M.Sc. in Data Science, Topographic Engineer
David Montero Loaiza
Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Ayush Mishra 3 May 06, 2022
Automated download of LANDSAT data from USGS website

LANDSAT-Download It seems USGS has changed the structure of its data, and so far, I have not been able to find the direct links to the products? Help

Olivier Hagolle 197 Dec 30, 2022
Constraint-based geometry sketcher for blender

Geometry Sketcher Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like

1.7k Jan 02, 2023
Tool to suck data from ArcGIS Server and spit it into PostgreSQL

chupaESRI About ChupaESRI is a Python module/command line tool to extract features from ArcGIS Server map services. Name? Think "chupacabra" or "Chupa

John Reiser 34 Dec 04, 2022
Deal with Bing Maps Tiles and Pixels / WGS 84 coordinates conversions, and generate grid Shapefiles

PyBingTiles This is a small toolkit in order to deal with Bing Tiles, used i.e. by Facebook for their Data for Good datasets. Install Clone this repos

Shoichi 1 Dec 08, 2021
Water Detect Algorithm

WaterDetect Synopsis WaterDetect is an end-to-end algorithm to generate open water cover mask, specially conceived for L2A Sentinel 2 imagery from MAJ

142 Dec 30, 2022
Evaluation of file formats in the context of geo-referenced 3D geometries.

Geo-referenced Geometry File Formats Classic geometry file formats as .obj, .off, .ply, .stl or .dae do not support the utilization of coordinate syst

Advanced Information Systems and Technology 11 Mar 02, 2022
Python bindings and utilities for GeoJSON

geojson This Python library contains: Functions for encoding and decoding GeoJSON formatted data Classes for all GeoJSON Objects An implementation of

Jazzband 763 Dec 26, 2022
Starlite-tile38 - Showcase using Tile38 via pyle38 in a Starlite application

Starlite-Tile38 Showcase using Tile38 via pyle38 in a Starlite application. Repo

Ben 8 Aug 07, 2022
ESMAC diags - Earth System Model Aerosol-Cloud Diagnostics Package

Earth System Model Aerosol-Cloud Diagnostics Package This Earth System Model (ES

Pacific Northwest National Laboratory 1 Jan 04, 2022
Raster processing benchmarks for Python and R packages

Raster processing benchmarks This repository contains a collection of raster processing benchmarks for Python and R packages. The tests cover the most

Krzysztof Dyba 13 Oct 24, 2022
Open GeoJSON data on geojson.io

geojsonio.py Open GeoJSON data on geojson.io from Python. geojsonio.py also contains a command line utility that is a Python port of geojsonio-cli. Us

Jacob Wasserman 114 Dec 21, 2022
Python tools for geographic data

GeoPandas Python tools for geographic data Introduction GeoPandas is a project to add support for geographic data to pandas objects. It currently impl

GeoPandas 3.5k Jan 03, 2023
Processing and interpolating spatial data with a twist of machine learning

Documentation | Documentation (dev version) | Contact | Part of the Fatiando a Terra project About Verde is a Python library for processing spatial da

Fatiando a Terra 468 Dec 20, 2022
A short term landscape evolution using a path sampling method to solve water and sediment flow continuity equations and model mass flows over complex topographies.

r.sim.terrain A short-term landscape evolution model that simulates topographic change for both steady state and dynamic flow regimes across a range o

Brendan Harmon 7 Oct 21, 2022
A modern, geometric typeface by @chrismsimpson (last commit @ 85fa625 Jun 9, 2020 before deletion)

Metropolis A modern, geometric typeface. Influenced by other popular geometric, minimalist sans-serif typefaces of the new millenium. Designed for opt

Darius 183 Dec 25, 2022
Asynchronous Client for the worlds fastest in-memory geo-database Tile38

This is an asynchonous Python client for Tile38 that allows for fast and easy interaction with the worlds fastest in-memory geodatabase Tile38.

Ben 53 Dec 29, 2022
Manage your XYZ Hub or HERE Data Hub spaces from Python.

XYZ Spaces for Python Manage your XYZ Hub or HERE Data Hub spaces and Interactive Map Layer from Python. FEATURED IN: Online Python Machine Learning C

HERE Technologies 30 Oct 18, 2022
A public data repository for datasets created from TransLink GTFS data.

TransLink Spatial Data What: TransLink is the statutory public transit authority for the Metro Vancouver region. This GitHub repository is a collectio

Henry Tang 3 Jan 14, 2022
GetOSM is an OpenStreetMap tile downloader written in Python that is agnostic of GUI frameworks.

GetOSM GetOSM is an OpenStreetMap tile downloader written in Python that is agnostic of GUI frameworks. It is used with tkinter by ProjPicker. Require

Huidae Cho 3 May 20, 2022