General tricks that may help you find bad, or noisy, labels in your dataset

Related tags

Miscellaneousdoubtlab
Overview

doubtlab

A lab for bad labels.

Warning still in progress.

This repository contains general tricks that may help you find bad, or noisy, labels in your dataset. The hope is that this repository makes it easier for folks to quickly check their own datasets before they invest too much time and compute on gridsearch.

Install

You can install the tool via pip.

python -m pip install doubtlab

Quickstart

Doubtlab allows you to define "reasons" for a row of data to deserve another look. These reasons can form a pipeline which can be used to retreive a sorted list of examples worth checking again.

from doubtlab import DoubtLab
from doubtlab.reasons import ProbaReason, WrongPredictionReason

# Let's say we have some model already
model.fit(X, y)

# Next we can the reasons for doubt. In this case we're saying
# that examples deserve another look if the associated proba values
# are low or if the model output doesn't match the associated label.
reasons = {
    'proba': ProbaReason(model=model),
    'wrong_pred': WrongPredictionReason(model=model)
}

# Pass these reasons to a doubtlab instance.
doubt = DoubtLab(**reasons)

# Get the predicates, or reasoning, behind the order
predicates = doubt.get_predicates(X, y)
# Get the ordered indices of examples worth checking again
indices = doubt.get_indices(X, y)
# Get the (X, y) candidates worth checking again
X_check, y_check = doubt.get_candidates(X, y)

Features

The library implemented many "reaons" for doubt.

  • ProbaReason: assign doubt when a models' confidence-values are low
  • RandomReason: assign doubt randomly, just for sure
  • LongConfidenceReason: assign doubt when a wrong class gains too much confidence
  • ShortConfidenceReason: assign doubt when the correct class gains too little confidence
  • DisagreeReason: assign doubt when two models disagree on a prediction
  • CleanLabReason: assign doubt according to cleanlab

Related Projects

  • The cleanlab project was an inspiration for this one. They have a great heuristic for bad label detection but I wanted to have a library that implements many. Be sure to check out their work on the labelerrors.com project.
  • My employer, Rasa, has always had a focus on data quality. Some of that attitude is bound to have seeped in here. Be sure to check out Rasa X if you're working on virtual assistants.
Comments
  • `QuantileDifferenceReason` and `StandardDeviationReason`

    `QuantileDifferenceReason` and `StandardDeviationReason`

    Hey! I was thinking if it would make sense to add two more reasons for regressions tasks, namely something like HighLeveragePointReason and HighStudentizedResidualReason.

    Citing Wikipedia:

    • Leverage is a measure of how far away the independent variable values of an observation are from those of the other observations. High-leverage points, if any, are outliers with respect to the independent variables (link)
    • A studentized residual is the quotient resulting from the division of a residual by an estimate of its standard deviation. [...] This is an important technique in the detection of outliers. (link)
    opened by FBruzzesi 31
  • Doubt Reason Based on Entropy

    Doubt Reason Based on Entropy

    If a machine learning model is very "confident" then the proba scores will have low entropy. The most uncertain outcome is a uniform distribution which would contain high entropy. Therefore, it could be sensible to add entropy as a reason for doubt.

    opened by koaning 10
  • Add staticmethods to reasons to prevent re-compute.

    Add staticmethods to reasons to prevent re-compute.

    I really like the current design with reasons just being function calls.

    However, when working with large datasets or in use cases where you already have the predictions of a model, I wonder if you have thought about letting users to pass either a sklearn model or the pre-computed probas (for those Reasons where it make sense). For threshold-based reasons and large datasets this could save some time and compute, allow for faster iteration, and it would open up the possibility of using other models beyond sklearn.

    I understand that the design wouldn't be as clean as it is right now, might cause miss-alignments if users don't send the correct shapes/positions, but I wonder if you have considered this (or any other way to pass pre-computed predictions).

    Just to illustrate what I mean (sorry about the dirty-pseudo code):

    class ProbaReason:
    
        def __init__(self, model=None, probas=None, max_proba=0.55):
            if not model or probas:
                 print("You should at least pass a model or probas")
            self.model = model
            self.probas = probas
            self.max_proba = max_proba
    
        def __call__(self, X, y=None):
            probas = probas if self.probas else self.model.predict_proba(X)
            result = probas.max(axis=1) <= self.max_proba
            return result.astype(np.float16)
    
    opened by dvsrepo 9
  • "Fair" Sorting

    Suppose there are 5 reasons for doubt, 4 of which overlap a lot. Then we may end up in a situation where we ignore a reason. That could be bad ... maybe it's worth exploring voting systems a bit to figure out alternative sorting methods.

    opened by koaning 7
  • Add example to docs that shows lambda X, y: y.isna()

    Add example to docs that shows lambda X, y: y.isna()

    Hey! First of all: this is a very cool project ;) I have been thinking about potential new "reasons" to doubt and I personally often look into predictions generated by a model whenever the data instance had missing values (and part of the model-pipeline imputes them)... So I wonder if it would be useful to have a FillNaNReason (or something similar) based, for example in the MissingIndicator transformer.

    opened by juanitorduz 4
  • added conda-install-option and badges to readme

    added conda-install-option and badges to readme

    This closes #14: doubtlab can now be installed with conda from conda-forge channel.

    • [x] Created conda-forge/doubtlab-feedstock to make doubtlab available on conda-forge channel.
    • [x] Added conda install option to readme.
    • [x] Added the following badges to readme.

    GitHub - License PyPI - Python Version PyPI - Package Version PyPI - Downloads Conda - Platform Conda (channel only) Docs - GitHub.io

    opened by sugatoray 4
  • Added a LICENSE

    Added a LICENSE

    Hi @koaning,

    I am assuming MIT License is okay for this repository. If you think otherwise, please feel free to make changes in the PR accordingly.

    • [x] Added an MIT License
    • [x] ~~Added a Citation file~~ Removed the citation file and updated the name of the PR. - ~~If you have an orcid, please consider adding it to the citation.cff file.~~
    opened by sugatoray 4
  • Add a conda installation option using conda-forge channel

    Add a conda installation option using conda-forge channel

    I have already started this one. Will push a PR once the conda installation option is available.

    See: Adding doubtlab from PyPI to conda-forge channel.

    @koaning As the primary maintainer of this repo, would you like to be listed as one of the maintainers of doubtlab on conda-forge channel? Please let me know, I will add your name as another maintainer of conda-forge/doubtlab-feedstock, once it is accepted.

    opened by sugatoray 3
  • Doubt about MarginConfidenceReason :-)

    Doubt about MarginConfidenceReason :-)

    Hi Vincent,

    Nice library! As mentioned a while ago on Twitter I'm doing a review to understand and compare different approaches to find label errors.

    I'm playing with the AG News dataset, which we know it contains a lot of errors from our own previous experiments with Rubrix (using the training loss and using cleanlab).

    While playing with the different reasons, I'm having difficulties to understand the reasoning behind the MarginConfidenceReason. As far as I can tell, if the model is doubting the margin between the top two predicted labels should be small, and that could point to an ambiguous example and/or a label error. If I read the code and description correctly, MarginConfidenceReason is doing the opposite, so I'd love to know the reasoning behind this to make sure I'm not missing something.

    For context, using the MarginConfidenceReason with the AG News training set yields almost the entire dataset (117788 examples for the default threshold of 0.2, and 112995 for threshold=0.5). I guess this could become useful when there's overlap with other reasons, but I want to make sure about the reasoning :-).

    opened by dvsrepo 2
  • updated docs: installation and badges

    updated docs: installation and badges

    Updated docs:

    • [x] updated installation (with conda)
    • [x] ~~added badges from readme~~

    @koaning I am not sure if you would prefer to include the badges in the docs (website). If you don't, please feel free to remove them.

    UPDATE: removed badges from the docs (docs/index.md).

    opened by sugatoray 2
  • Issue with cleanlab upgrading to v2

    Issue with cleanlab upgrading to v2

    Issue

    image

    Environment details

    image

    Temporary fix

    pip install "doubtlab==1.0.0"

    More permanent fix

    Pin doubtlab dependency to "doubtlab<2.0.0"

    More more permanent fix

    They've made some changes to their API

    Let me know if you'd like me to make a PR

    Thanks for a great package @koaning 😄

    opened by duarteocarmo 1
  • Consider a fairlearn demo.

    Consider a fairlearn demo.

    When two models disagree something interesting might be happening. But that'll only happen if you have two models that are actually different.

    What if you have one model that's better at accuracy and another one that's better at fairness.

    Maybe these labels deserve more attention too.

    opened by koaning 0
  • Assign Doubt for Dissimilarity from Labelled Set

    Assign Doubt for Dissimilarity from Labelled Set

    Suppose that y can contain NaN values if they aren't labeled. In that case, we may want to favor a subset of these NaN values. In particular: if they differ substantially from the already labeled datapoints.

    The idea here is that we may be able to sample more diverse datapoints.

    opened by koaning 10
  • Does it make sense to add an ensemble for spaCy?

    Does it make sense to add an ensemble for spaCy?

    This seems to be a like-able method of dealing with text outside the realm of scikit-learn. But I prefer to delay this feature until I really understand the use-case. For anything related to entities we cannot use sklearn, but tags/classes should work fine as-is.

    opened by koaning 1
Releases(0.2.4)
Owner
vincent d warmerdam
Solving problems involving data. Mostly NLP these days. AskMeAnything[tm].
vincent d warmerdam
A simple program which gets a file(CSV/Excel) with tasks and creates different variants

TestMakerProject A simple program which gets a file(CSV/Excel) with tasks and creates different variants The main program is QTengine.py You only have

George 3 Nov 18, 2021
Calc.py - A powerful Python REPL calculator

Calc - A powerful Python REPL calculator This is a calculator with a complex sou

Alejandro 8 Oct 22, 2022
Fastest Semantle solver this side of the Mississippi

semantle Fastest Semantle solver this side of the Mississippi. Roughly 3 average turns to win Measured against (part of) the word2vec-google-news-300

Frank Odom 8 Dec 26, 2022
Streamlit apps done following data professor's course on YouTube

streamlit-twelve-apps Streamlit apps done following data professor's course on YouTube Español Curso de apps de data science hecho por Data Professor

Federico Bravin 1 Jan 10, 2022
Experimental proxy for dumping the unencrypted packet data from Brawl Stars (WIP)

Brawl Stars Proxy Experimental proxy for version 39.99 of Brawl Stars. It allows you to capture the packets being sent between the Brawl Stars client

4 Oct 29, 2021
A web app that is written entirely in Python

University Project About I made this web app to finish a project assigned by my teacher. It is written entirely in Python, thanks to streamlit to make

15 Nov 27, 2022
Official repository for the BPF Performance Tools book

BPF Performance Tools This is the official repository of BPF (eBPF) tools from the book BPF Performance Tools: Linux and Application Observability. Th

Brendan Gregg 1.2k Dec 28, 2022
(Pre-)compromise operations for MITRE CALDERA

(Pre-)compromise operations for CALDERA Extend your CALDERA operations over the entire adversary killchain. In contrast to MITRE's access plugin, cald

Diederik Bakker 3 Aug 22, 2022
Exploring basic lambda calculus in Python

Lambda Exploring basic lambda calculus in Python. In this repo I have used the lambda function built into python to get a more intiutive feel of lambd

Bhardwaj Bhaskar 2 Nov 12, 2021
Badge-Link-Creater 'For more beautiful profiles.'

Badge-Link-Creater 'For more beautiful profiles.' Ready Badges Prepares the codes of the previously prepared badges for you. Note Click here for more

Mücahit Gündüz 9 Oct 19, 2022
An easy way to access the Scratch API!

The majority of people are likely here because they want to easily access the Scratch API!

rgantzos 0 May 04, 2022
Projeto de análise de dados com SQL

Project-Analizyng-International-Debt-Statistics- Projeto de análise de dados com SQL - Plataforma Data Camp Descrição do Projeto : Não é que nós human

Lorrayne Silva 1 Feb 01, 2022
Demodulate and error correct FIS-B and ADS-B signals on 978 MHz.

FIS-B 978 ('fisb-978') is a set of programs that demodulates and error corrects FIS-B (Flight Information System - Broadcast) and ADS-B (Automatic Dep

2 Nov 15, 2022
Library to emulate the Sneakers movie effect

py-sneakers Port to python of the libnms C library To recreate the famous data decryption effect shown in the 1992 film Sneakers. Install pip install

Nicolas Rebagliati 11 Aug 27, 2021
SHF TEST BACKEND

➰ SHF TEST BACKEND ➿ 🐙 Goals Dada una matriz de números enteros. Obtenga el elemento máximo en la matriz que produce la suma más pequeña al agregar t

Wilmer Rodríguez S 1 Dec 19, 2021
A tool converting rpk (记乎) to apkg (Anki Package)

RpkConverter This tool is used to convert rpk file to Anki apkg. 如果遇到任何问题,请发起issue,并描述情况。如果转换rpk出现问题,请将文件发到邮箱 ssqyang [AT] outlook.com,我会debug并修复问题。 下

9 Nov 01, 2021
Addon to give a keybind to automatically enable contact shadows on all lights in a scene

3-2-1 Contact(Shadow) An easy way to let you enable contact shadows on all your lights, because Blender doesn't enable it by default, and doesn't give

TDV Alinsa 3 Feb 02, 2022
Fused multiply-add (with a single rounding) for Python.

pyfma Fused multiply-add for Python. Fused multiply-add computes (x*y) + z with a single rounding. Useful for dot products, matrix multiplications, po

Nico Schlömer 18 Nov 08, 2022
Tool for running a high throughput data ingestion/transformation workload with MongoDB

Mongo Mangler The mongo-mangler tool is a lightweight Python utility, which you can run from a low-powered machine to execute a high throughput data i

Paul Done 9 Jan 02, 2023
Automatically load and dump your dataclasses 📂🙋

file dataclasses Installation By default, filedataclasses comes with support for JSON files only. To support other formats like YAML and TOML, filedat

Alon 1 Dec 30, 2021