General tricks that may help you find bad, or noisy, labels in your dataset

Related tags

Miscellaneousdoubtlab
Overview

doubtlab

A lab for bad labels.

Warning still in progress.

This repository contains general tricks that may help you find bad, or noisy, labels in your dataset. The hope is that this repository makes it easier for folks to quickly check their own datasets before they invest too much time and compute on gridsearch.

Install

You can install the tool via pip.

python -m pip install doubtlab

Quickstart

Doubtlab allows you to define "reasons" for a row of data to deserve another look. These reasons can form a pipeline which can be used to retreive a sorted list of examples worth checking again.

from doubtlab import DoubtLab
from doubtlab.reasons import ProbaReason, WrongPredictionReason

# Let's say we have some model already
model.fit(X, y)

# Next we can the reasons for doubt. In this case we're saying
# that examples deserve another look if the associated proba values
# are low or if the model output doesn't match the associated label.
reasons = {
    'proba': ProbaReason(model=model),
    'wrong_pred': WrongPredictionReason(model=model)
}

# Pass these reasons to a doubtlab instance.
doubt = DoubtLab(**reasons)

# Get the predicates, or reasoning, behind the order
predicates = doubt.get_predicates(X, y)
# Get the ordered indices of examples worth checking again
indices = doubt.get_indices(X, y)
# Get the (X, y) candidates worth checking again
X_check, y_check = doubt.get_candidates(X, y)

Features

The library implemented many "reaons" for doubt.

  • ProbaReason: assign doubt when a models' confidence-values are low
  • RandomReason: assign doubt randomly, just for sure
  • LongConfidenceReason: assign doubt when a wrong class gains too much confidence
  • ShortConfidenceReason: assign doubt when the correct class gains too little confidence
  • DisagreeReason: assign doubt when two models disagree on a prediction
  • CleanLabReason: assign doubt according to cleanlab

Related Projects

  • The cleanlab project was an inspiration for this one. They have a great heuristic for bad label detection but I wanted to have a library that implements many. Be sure to check out their work on the labelerrors.com project.
  • My employer, Rasa, has always had a focus on data quality. Some of that attitude is bound to have seeped in here. Be sure to check out Rasa X if you're working on virtual assistants.
Comments
  • `QuantileDifferenceReason` and `StandardDeviationReason`

    `QuantileDifferenceReason` and `StandardDeviationReason`

    Hey! I was thinking if it would make sense to add two more reasons for regressions tasks, namely something like HighLeveragePointReason and HighStudentizedResidualReason.

    Citing Wikipedia:

    • Leverage is a measure of how far away the independent variable values of an observation are from those of the other observations. High-leverage points, if any, are outliers with respect to the independent variables (link)
    • A studentized residual is the quotient resulting from the division of a residual by an estimate of its standard deviation. [...] This is an important technique in the detection of outliers. (link)
    opened by FBruzzesi 31
  • Doubt Reason Based on Entropy

    Doubt Reason Based on Entropy

    If a machine learning model is very "confident" then the proba scores will have low entropy. The most uncertain outcome is a uniform distribution which would contain high entropy. Therefore, it could be sensible to add entropy as a reason for doubt.

    opened by koaning 10
  • Add staticmethods to reasons to prevent re-compute.

    Add staticmethods to reasons to prevent re-compute.

    I really like the current design with reasons just being function calls.

    However, when working with large datasets or in use cases where you already have the predictions of a model, I wonder if you have thought about letting users to pass either a sklearn model or the pre-computed probas (for those Reasons where it make sense). For threshold-based reasons and large datasets this could save some time and compute, allow for faster iteration, and it would open up the possibility of using other models beyond sklearn.

    I understand that the design wouldn't be as clean as it is right now, might cause miss-alignments if users don't send the correct shapes/positions, but I wonder if you have considered this (or any other way to pass pre-computed predictions).

    Just to illustrate what I mean (sorry about the dirty-pseudo code):

    class ProbaReason:
    
        def __init__(self, model=None, probas=None, max_proba=0.55):
            if not model or probas:
                 print("You should at least pass a model or probas")
            self.model = model
            self.probas = probas
            self.max_proba = max_proba
    
        def __call__(self, X, y=None):
            probas = probas if self.probas else self.model.predict_proba(X)
            result = probas.max(axis=1) <= self.max_proba
            return result.astype(np.float16)
    
    opened by dvsrepo 9
  • "Fair" Sorting

    Suppose there are 5 reasons for doubt, 4 of which overlap a lot. Then we may end up in a situation where we ignore a reason. That could be bad ... maybe it's worth exploring voting systems a bit to figure out alternative sorting methods.

    opened by koaning 7
  • Add example to docs that shows lambda X, y: y.isna()

    Add example to docs that shows lambda X, y: y.isna()

    Hey! First of all: this is a very cool project ;) I have been thinking about potential new "reasons" to doubt and I personally often look into predictions generated by a model whenever the data instance had missing values (and part of the model-pipeline imputes them)... So I wonder if it would be useful to have a FillNaNReason (or something similar) based, for example in the MissingIndicator transformer.

    opened by juanitorduz 4
  • added conda-install-option and badges to readme

    added conda-install-option and badges to readme

    This closes #14: doubtlab can now be installed with conda from conda-forge channel.

    • [x] Created conda-forge/doubtlab-feedstock to make doubtlab available on conda-forge channel.
    • [x] Added conda install option to readme.
    • [x] Added the following badges to readme.

    GitHub - License PyPI - Python Version PyPI - Package Version PyPI - Downloads Conda - Platform Conda (channel only) Docs - GitHub.io

    opened by sugatoray 4
  • Added a LICENSE

    Added a LICENSE

    Hi @koaning,

    I am assuming MIT License is okay for this repository. If you think otherwise, please feel free to make changes in the PR accordingly.

    • [x] Added an MIT License
    • [x] ~~Added a Citation file~~ Removed the citation file and updated the name of the PR. - ~~If you have an orcid, please consider adding it to the citation.cff file.~~
    opened by sugatoray 4
  • Add a conda installation option using conda-forge channel

    Add a conda installation option using conda-forge channel

    I have already started this one. Will push a PR once the conda installation option is available.

    See: Adding doubtlab from PyPI to conda-forge channel.

    @koaning As the primary maintainer of this repo, would you like to be listed as one of the maintainers of doubtlab on conda-forge channel? Please let me know, I will add your name as another maintainer of conda-forge/doubtlab-feedstock, once it is accepted.

    opened by sugatoray 3
  • Doubt about MarginConfidenceReason :-)

    Doubt about MarginConfidenceReason :-)

    Hi Vincent,

    Nice library! As mentioned a while ago on Twitter I'm doing a review to understand and compare different approaches to find label errors.

    I'm playing with the AG News dataset, which we know it contains a lot of errors from our own previous experiments with Rubrix (using the training loss and using cleanlab).

    While playing with the different reasons, I'm having difficulties to understand the reasoning behind the MarginConfidenceReason. As far as I can tell, if the model is doubting the margin between the top two predicted labels should be small, and that could point to an ambiguous example and/or a label error. If I read the code and description correctly, MarginConfidenceReason is doing the opposite, so I'd love to know the reasoning behind this to make sure I'm not missing something.

    For context, using the MarginConfidenceReason with the AG News training set yields almost the entire dataset (117788 examples for the default threshold of 0.2, and 112995 for threshold=0.5). I guess this could become useful when there's overlap with other reasons, but I want to make sure about the reasoning :-).

    opened by dvsrepo 2
  • updated docs: installation and badges

    updated docs: installation and badges

    Updated docs:

    • [x] updated installation (with conda)
    • [x] ~~added badges from readme~~

    @koaning I am not sure if you would prefer to include the badges in the docs (website). If you don't, please feel free to remove them.

    UPDATE: removed badges from the docs (docs/index.md).

    opened by sugatoray 2
  • Issue with cleanlab upgrading to v2

    Issue with cleanlab upgrading to v2

    Issue

    image

    Environment details

    image

    Temporary fix

    pip install "doubtlab==1.0.0"

    More permanent fix

    Pin doubtlab dependency to "doubtlab<2.0.0"

    More more permanent fix

    They've made some changes to their API

    Let me know if you'd like me to make a PR

    Thanks for a great package @koaning 😄

    opened by duarteocarmo 1
  • Consider a fairlearn demo.

    Consider a fairlearn demo.

    When two models disagree something interesting might be happening. But that'll only happen if you have two models that are actually different.

    What if you have one model that's better at accuracy and another one that's better at fairness.

    Maybe these labels deserve more attention too.

    opened by koaning 0
  • Assign Doubt for Dissimilarity from Labelled Set

    Assign Doubt for Dissimilarity from Labelled Set

    Suppose that y can contain NaN values if they aren't labeled. In that case, we may want to favor a subset of these NaN values. In particular: if they differ substantially from the already labeled datapoints.

    The idea here is that we may be able to sample more diverse datapoints.

    opened by koaning 10
  • Does it make sense to add an ensemble for spaCy?

    Does it make sense to add an ensemble for spaCy?

    This seems to be a like-able method of dealing with text outside the realm of scikit-learn. But I prefer to delay this feature until I really understand the use-case. For anything related to entities we cannot use sklearn, but tags/classes should work fine as-is.

    opened by koaning 1
Releases(0.2.4)
Owner
vincent d warmerdam
Solving problems involving data. Mostly NLP these days. AskMeAnything[tm].
vincent d warmerdam
Learn the basics of Python. These tutorials are for Python beginners. so even if you have no prior knowledge of Python, you won’t face any difficulty understanding these tutorials.

01_Python_Introduction Introduction 👋 Python is a modern, robust, high level programming language. It is very easy to pick up even if you are complet

Milaan Parmar / Милан пармар / _米兰 帕尔马 245 Dec 30, 2022
This is a simple quizz which can ask user for login/register session, then consult to the Quiz interface.

SIMPLE-QUIZ- This is a simple quizz which can ask user for login/register session, then consult to the Quiz interface. By CHAKFI Ahmed MASTER SYSTEMES

CHAKFI Ahmed 1 Jan 10, 2022
You can easily send campaigns, e-marketing have actually account using cash will thank you for using our tools, and you can support our Vodafone Cash +201090788026

*** Welcome User Sorry I Mean Hello Brother ✓ Devolper and Design : Mokhtar Abdelkreem ========================================== You Can Follow Us O

Mo Code 1 Nov 03, 2021
Morth - Stack Based Programming Language

Morth WARNING! THIS LANGUAGE IS A WORKING PROGRESS. THIS IS JUST A HOBBY PROJECT

Dominik Danner 2 Mar 05, 2022
Display your data in an attractive way in your notebook!

Bloxs Bloxs is a simple python package that helps you display information in an attractive way (formed in blocks). Perfect for building dashboards, re

MLJAR 192 Dec 28, 2022
Odoo modules related to website/webshop

Website Apps related to Odoo it's website/webshop features: webshop_public_prices: allow configuring to hide or show product prices and add to cart bu

Yenthe Van Ginneken 9 Nov 04, 2022
PBN Obfuscator: A overpowered obfuscator for python, which will help you protect your source code

PBN Obfuscator PBN Obfuscator is a overpowered obfuscator for python, which will

Karim 6 Dec 22, 2022
A basic notes app to store your notes.

Notes Webapp A basic notes webapp to keep your notes.You can add, edit and delete notes after signing up. To add a note type your note in the text box

2 Oct 23, 2021
Tool that adds githuh profile views to ur acc

Tool that adds githuh profile views to ur acc

Lamp 2 Nov 28, 2021
Code repository for the Pytheas submersible observation platform

Pytheas Main repository for the Pytheas submersible probe system. List of Acronyms/Terms USP - Underwater Sensor Platform - The primary platform in th

UltraChip 2 Nov 19, 2022
Download and archive entire usenet newsgroups over NNTP.

Usenet Archiving Tool This code is for archiving Usenet discussions, not downloading files. Newsgroup posts are saved under the authors name and email

Corey White 2 Dec 23, 2021
Automatically find solutions when your Python code encounters an issue.

What The Python?! Helping you find answers to the errors Python spits out. Installation You can find the source code on GitHub at: https://github.com/

What The Python?! 139 Dec 14, 2022
Class and mathematical functions for quaternion numbers.

Quaternions Class and mathematical functions for quaternion numbers. Installation Python This is a Python 3 module. If you don't have Python installed

3 Nov 08, 2022
The official FOSSCOMM 2021 CTF by [email protected]

FOSSCOMM 2021 CTF Table of Contents General Info FAQ General Info Purpose: This CTF is a collaboration between the FOSSCOMM conference and the Machina 2 Nov 14, 2021

Semester long, web application project for CSCI 4370/6370 (Database Management)

Database_Project Prototype ideas for website: Computer Science library (Sells books, products, etc.) Code editor Graph visualizer / creator (can save

Jordan Harman 4 Feb 17, 2022
EasyBuild is a software build and installation framework that allows you to manage (scientific) software on High Performance Computing (HPC) systems in an efficient way.

EasyBuild is a software build and installation framework that allows you to manage (scientific) software on High Performance Computing (HPC) systems in an efficient way.

EasyBuild community 87 Dec 27, 2022
Grouping nucleotide coordinate ranges.

NuclRanger Grouping nucleotide coordinate ranges. A quick pre-processing step for "bedtools getfasta":- https://bedtools.readthedocs.io/en/latest/cont

Sujanavan Tiruvayipati 1 Oct 04, 2022
Statistics Calculator module for all types of Stats calculations.

Statistics-Calculator This Calculator user the formulas and methods to find the statistical values listed. Statistics Calculator module for all types

2 May 29, 2022
A tutorial presents several practical examples of how to build DAGs in Apache Airflow

Apache Airflow - Python Brasil 2021 Este tutorial apresenta vários exemplos práticos de como construir DAGs no Apache Airflow. Background Apache Airfl

Jusbrasil 14 Jun 03, 2022
Simple project to learn more about Bézier curves

Python Quadratic Bézier Simple project to learn more about Bézier curves. On this project i used some api's to graphics and gui pygame thorpy in theor

Kenned Ferreira 2 Mar 06, 2022