Understanding the field usage of any object in Salesforce

Overview

Understanding the field usage of any object in Salesforce

One of the biggest problems that I have addressed while working with Salesforce is to understand and evaluate the field usage of a custom object. This application does the work for you, generating a CSV/Excel file with the date of the last record that used each field, and the percentage of use across all of them.

To make this app work, you will need a System Administrator credential to log into Salesforce
This app is currently working with the Spyder IDE, which is part of Anaconda


Let's understand how it works!

Dependencies

First, we need our dependencies. We will use Pandas, datetime and Simple Salesforce

from simple_salesforce import Salesforce
import pandas as pd
import datetime

Credentials

Next, we are going to connect to Salesforce with Simple Salesforce

  sf = Salesforce(password='password',
            username='username',
            organizationId='organizationId')

Your organizationId should look like this, 00JH0000000tYml.
To find it, just follow the next steps (Lightning experience):

  • Log into Salesforce with your System Administrator credentials
  • Press the gear button
  • Press Setup, (setup for current app)
  • In the quick search bar (the one in the left) type Company Information
  • Click Company Information
  • Finally, look for Salesforce.com Organization ID. The ID will look like 00JH0000000tYml

The Object

Now you will need to plug the object name. The object name is the API Name of the object. Normally, if it is a custom object, it will finish like this, __c
To find the API NAME just follow these instructions:

  • Log into Salesforce with your System Administrator credentials
  • Press the gear button
  • Press Setup, (setup for current app)
  • Click on Object Manager in the header of the page
  • Find your object using the name and copy the API NAME which is next to the name of the object

This part of the code if going to use the name of the object to bring all the fields
  object_to_evaluate = "object"
  object_fields = getattr(sf, object_to_evaluate).describe()

The Date

This part is important and will make you think. The default code is going to bring the data from the last year. Is important to understand what happened during that period. If you release a new field a week ago, it will show that it was use a couple of days ago, but the usage will be really low, around a 2% (7/365). You can change the days to evaluate simple change the 365 for the number of days that you want.

last_year = (datetime.datetime.now() + datetime.timedelta(days=-365)).strftime("%Y-%m-%d"+"T"+"%H:%M:%S"+"Z")

The Result

Now we are going to iterate all the fields and get the created date from the last record that used the field, and the number of records that use that field during the period (one year).

{} \ AND {} != null \ ORDER BY Id DESC \ LIMIT 1".format(object_to_evaluate, last_year , field['name']) )['records']) field_detail['Field Name'] = field['name'] field_detail['Field Label'] = field['label'] field_detail['Found?'] = 'Yes' field_quantity = pd.DataFrame( sf.query("SELECT count(Id) \ FROM {} \ WHERE createddate > {} \ AND {} != null".format(object_to_evaluate, last_year , field['name']) ))['records'][0]['expr0'] field_detail['Quantity'] = field_quantity data.append(field_detail) if field_detail.empty: error_data = {'Field Name': [field['name']], 'Field Label': [field['label']] , 'Found?': ['Yes, no data']} data.append(pd.DataFrame(error_data)) except: error_data = {'Field Name': [field['name']], 'Field Label': [field['label']] , 'Found?': ['No']} data.append(pd.DataFrame(error_data)) # Concatenate the list of result into one dataframe data_to_csv = pd.concat(data, ignore_index=True)">
for field in object_fields['fields']:
    print(field['name'])
    try:
        field_detail = pd.DataFrame(
            sf.query("SELECT Id, createddate, SystemModStamp \
                      FROM {} \
                      WHERE createddate > {} \
                        AND {} != null \
                      ORDER BY Id DESC \
                      LIMIT 1".format(object_to_evaluate, last_year , field['name'])
                      )['records'])

        field_detail['Field Name'] = field['name']
        field_detail['Field Label'] = field['label']
        field_detail['Found?'] = 'Yes'

        field_quantity = pd.DataFrame(
            sf.query("SELECT count(Id) \
                    FROM {} \
                    WHERE createddate > {} \
                    AND {} != null".format(object_to_evaluate, last_year , field['name'])
                    ))['records'][0]['expr0']

        field_detail['Quantity'] = field_quantity                        
        data.append(field_detail)

        if field_detail.empty:
            error_data = {'Field Name': [field['name']],
                          'Field Label': [field['label']] , 
                          'Found?': ['Yes, no data']}
            data.append(pd.DataFrame(error_data))
    except:
        error_data = {'Field Name': [field['name']],
                      'Field Label': [field['label']] , 
                      'Found?': ['No']}
        data.append(pd.DataFrame(error_data))

# Concatenate the list of result into one dataframe
data_to_csv = pd.concat(data, ignore_index=True)

Some Formatting

Formatting is a nice to have to understand the result, especially if you are going to share the insights. We are going to rename some columns, format the dates column in a way that CSV/Excel can understand, and we are adding a % of use column.

data_to_csv.rename(columns={'CreatedDate': 'Created Date', 'SystemModstamp': 'Modified Date'}, inplace=True)
data_to_csv['Created Date'] = pd.to_datetime(data_to_csv['Created Date']).dt.date
data_to_csv['Modified Date'] = pd.to_datetime(data_to_csv['Modified Date']).dt.date
data_to_csv = data_to_csv.drop('attributes', axis=1)
max_value = data_to_csv['Quantity'].max()
data_to_csv['% of use'] = data_to_csv['Quantity'] / max_value

The Files

Finally, we are going to export the files to CSV and Excel, so you can choose which one you prefer to use. The files will be stored in the same folder as the app. So, if you are running this app in your Desktop folder, the CSV and Excel files will be store in the same folder.

data_to_csv.to_csv('last Field Usage Date.csv')
data_to_csv.to_excel('last Field Usage Date.xlsx', float_format="%.3f")

If you like it, remember to
Buy Me A Coffee


The final code will look like this:

{} \ AND {} != null \ ORDER BY Id DESC \ LIMIT 1".format(object_to_evaluate, last_year , field['name']) )['records']) field_detail['Field Name'] = field['name'] field_detail['Field Label'] = field['label'] field_detail['Found?'] = 'Yes' field_quantity = pd.DataFrame( sf.query("SELECT count(Id) \ FROM {} \ WHERE createddate > {} \ AND {} != null".format(object_to_evaluate, last_year , field['name']) ))['records'][0]['expr0'] field_detail['Quantity'] = field_quantity data.append(field_detail) if field_detail.empty: error_data = {'Field Name': [field['name']], 'Field Label': [field['label']] , 'Found?': ['Yes, no data']} data.append(pd.DataFrame(error_data)) except: error_data = {'Field Name': [field['name']], 'Field Label': [field['label']] , 'Found?': ['No']} data.append(pd.DataFrame(error_data)) # Concatenate the list of result into one dataframe data_to_csv = pd.concat(data, ignore_index=True) # Format the CSV/Excel report data_to_csv.rename(columns={'CreatedDate': 'Created Date', 'SystemModstamp': 'Modified Date'}, inplace=True) data_to_csv['Created Date'] = pd.to_datetime(data_to_csv['Created Date']).dt.date data_to_csv['Modified Date'] = pd.to_datetime(data_to_csv['Modified Date']).dt.date data_to_csv = data_to_csv.drop('attributes', axis=1) max_value = data_to_csv['Quantity'].max() data_to_csv['% of use'] = data_to_csv['Quantity'] / max_value # Export the data to a CSV/Excel file data_to_csv.to_csv('last Field Usage Date.csv') data_to_csv.to_excel('last Field Usage Date.xlsx', float_format="%.3f")">
from simple_salesforce import Salesforce
import pandas as pd
import datetime

# Connection to Salesforce
sf = Salesforce(password='password',
                username='username',
                organizationId='organizationId')


# Change the name to the object that you want to evaluate. If is a custom object remember to end it with __c
object_to_evaluate = "object"

# Get all the fields from the Object
object_fields = getattr(sf, object_to_evaluate).describe()

# Define an empty list to append the information
data = []

# Create a date variable to define from when we want to get the data
last_year = (datetime.datetime.now() + datetime.timedelta(days=-365)).strftime("%Y-%m-%d"+"T"+"%H:%M:%S"+"Z")

# Iterate over the fields and bring the last record created Date where the field wasn't empty
# If the record is not found, store it in the CSV/Excel file as not found
for field in object_fields['fields']:
    print(field['name'])
    try:
        field_detail = pd.DataFrame(
            sf.query("SELECT Id, createddate, SystemModStamp \
                      FROM {} \
                      WHERE createddate > {} \
                        AND {} != null \
                      ORDER BY Id DESC \
                      LIMIT 1".format(object_to_evaluate, last_year , field['name'])
                      )['records'])

        field_detail['Field Name'] = field['name']
        field_detail['Field Label'] = field['label']
        field_detail['Found?'] = 'Yes'

        field_quantity = pd.DataFrame(
            sf.query("SELECT count(Id) \
                    FROM {} \
                    WHERE createddate > {} \
                    AND {} != null".format(object_to_evaluate, last_year , field['name'])
                    ))['records'][0]['expr0']

        field_detail['Quantity'] = field_quantity                        
        data.append(field_detail)

        if field_detail.empty:
            error_data = {'Field Name': [field['name']],
                          'Field Label': [field['label']] , 
                          'Found?': ['Yes, no data']}
            data.append(pd.DataFrame(error_data))
    except:
        error_data = {'Field Name': [field['name']],
                      'Field Label': [field['label']] , 
                      'Found?': ['No']}
        data.append(pd.DataFrame(error_data))

# Concatenate the list of result into one dataframe
data_to_csv = pd.concat(data, ignore_index=True)

# Format the CSV/Excel report
data_to_csv.rename(columns={'CreatedDate': 'Created Date', 'SystemModstamp': 'Modified Date'}, inplace=True)
data_to_csv['Created Date'] = pd.to_datetime(data_to_csv['Created Date']).dt.date
data_to_csv['Modified Date'] = pd.to_datetime(data_to_csv['Modified Date']).dt.date
data_to_csv = data_to_csv.drop('attributes', axis=1)
max_value = data_to_csv['Quantity'].max()
data_to_csv['% of use'] = data_to_csv['Quantity'] / max_value

# Export the data to a CSV/Excel file
data_to_csv.to_csv('last Field Usage Date.csv')
data_to_csv.to_excel('last Field Usage Date.xlsx', float_format="%.3f")

HOPE IT HELPS!

If you like it, remember to
Buy Me A Coffee

Owner
Sebastian Undurraga
Sebastian Undurraga
Junos PyEZ is a Python library to remotely manage/automate Junos devices.

The repo is under active development. If you take a clone, you are getting the latest, and perhaps not entirely stable code. DOCUMENTATION Official Do

Juniper Networks 623 Dec 10, 2022
Absolute solvation free energy calculations with OpenFF and OpenMM

ABsolute SOLVantion Free Energy Calculations The absolv framework aims to offer a simple API for computing the change in free energy when transferring

7 Dec 07, 2022
Task dispatcher for Postgres

Features a task being ran as an OS process supports task queue with priority and process limit per node fully database driven (a worker and task can b

2 Dec 06, 2021
Цифрова збрoя проти xуйлoвської пропаганди.

Паляниця Цифрова зброя проти xуйлoвської пропаганди. Щоб негайно почати шкварити рашистські сайти – мерщій у швидкий старт! ⚡️ А коли ворожі сервери в

8 Mar 22, 2022
Бэкапалка таблиц mysql 8 через брокер сообщений nats

nats-mysql-tables-backup Бэкап таблиц mysql 8 через брокер сообщений nats (проверено и работает в ubuntu 20.04, при наличии python 3.8) ПРИМЕРЫ: Ниже

Constantine 1 Dec 13, 2021
Hospitality app for ERPNext to manage hotels & restaurants.

Hospitality ERPNext Hospitality module is designed to handle workflows for Hotels and Restaurants. Manage Restaurants The Restaurant module in ERPNext

Frappe 19 Dec 26, 2022
Mechanized literally means automation.

Mechanized literally means automation. And this branch which you are now observing is automated by the python script. This python project actually automates my workflow related to Git & Github.

Shreejan Dolai 4 Nov 11, 2022
[draft] tools for schnetpack

schnetkit some tooling for schnetpack EXPERIMENTAL/IN DEVELOPMENT DO NOT USE This is an early draft of some infrastructure built around schnetpack. In

Marcel 1 Nov 08, 2021
A male and female dog names python package

A male and female dog names python package

Fayas Noushad 3 Dec 12, 2021
ASVspoof 2021 Baseline Systems

ASVspoof 2021 Baseline Systems Baseline systems are grouped by task: Speech Deepfake (DF) Logical Access (LA) Physical Access (PA) Please find more de

91 Dec 28, 2022
Pattern Matching for Python 3.7+ in a simple, yet powerful, extensible manner.

Awesome Pattern Matching (apm) for Python pip install awesome-pattern-matching Simple Powerful Extensible Composable Functional Python 3.7+, PyPy3.7+

Julian Fleischer 97 Nov 03, 2022
An open-source Python project series where beginners can contribute and practice coding.

Python Mini Projects A collection of easy Python small projects to help you improve your programming skills. Table Of Contents Aim Of The Project Cont

Leah Nguyen 491 Jan 04, 2023
Draw random mazes in python

a-maze Draw random mazes in python This program generates and draws a rectangular maze, with an entrance on one side and one on the opposite side. The

Andrea Pasquali 1 Nov 21, 2021
ERPNext Easy Letterhead

ERPNext Easy Letterhead Intro Quality letterheads are a problem for non-technical users. So we've built (really hacked together) a slightly easier sol

Bantoo 3 Jan 02, 2023
App and Python library for parsing, writing, and validation of the STAND013 file format.

python-stand013 python-stand013 is a Python app and library for parsing, writing, and validation of the STAND013 file format. Features The following i

Oda 3 Nov 09, 2022
Tool for running a high throughput data ingestion/transformation workload with MongoDB

Mongo Mangler The mongo-mangler tool is a lightweight Python utility, which you can run from a low-powered machine to execute a high throughput data i

Paul Done 9 Jan 02, 2023
An html wrapper for python

MessySoup What is it? MessySoup is a python wrapper for html elements. While still a ways away, the main goal is to be able to build a wesbite straigh

4 Jan 05, 2022
PyCASCLib: CASC interface for Warcraft III

PyCASCLib CASC interface for Warcraft III. This repo provides bindings for JCASC: https://github.com/DrSuperGood/JCASC Installation Jdk is required fo

2 Jun 04, 2022
Simple project to assist in tracking/logging my working hours

Fill working hours Basic script to assist in the logging/tracking of my working hours How it works Create a file called projects.json in this director

Robin Kennedy-Reid 2 Oct 31, 2022
Animation picker for Audodesk Maya 2017 (or higher)

Dreamwall Picker Animation picker for Audodesk Maya 2017 (or higher) Authors: Lionel Brouyère, Olivier Evers This tool is a fork of Hotbox Designer (L

DreamWall 93 Dec 21, 2022