Easily convert matplotlib plots from Python into interactive Leaflet web maps.

Overview

mplleaflet

mplleaflet is a Python library that converts a matplotlib plot into a webpage containing a pannable, zoomable Leaflet map. It can also embed the Leaflet map in an IPython notebook. The goal of mplleaflet is to enable use of Python and matplotlib for visualizing geographic data on slippy maps without having to write any Javascript or HTML. You also don't need to worry about choosing the base map content i.e., coastlines, roads, etc.

Only one line of code is needed to convert a plot into a web map. mplleaflet.show()

The library is heavily inspired by mpld3 and uses mplexporter to do most of the heavy lifting to walk through Figure objects.

Examples

Basic usage

The simplest use is to just create your plot using matplotlib commands and call mplleaflet.show().

>>> import matplotlib.pyplot as plt
... # Load longitude, latitude data
>>> plt.hold(True)
# Plot the data as a blue line with red squares on top
# Just plot longitude vs. latitude
>>> plt.plot(longitude, latitude, 'b') # Draw blue line
>>> plt.plot(longitude, latitude, 'rs') # Draw red squares

matplotlib x,y plot

Normally, displaying data as longitude, latitude will cause a cartographer to cry. That's totally fine with mplleaflet, Leaflet will project your data properly.

# Convert to interactive Leaflet map
>>> import mplleaflet
>>> mplleaflet.show()

Click to view final web page

Leaflet map preview

Disclaimer: Displaying data in spherical mercator might also cause a cartographer to cry.

show() allows you to specify different tile layer URLs, CRS/EPSG codes, output files, etc.

IPython Notebook embedding

Just use mplleaflet.display() to embed the interactive Leaflet map in an IPython notebook. Click here to see a live example.

Other examples

Why mplleaflet?

Other Python libraries, basemap and folium, exist to create maps in Python. However mplleaflet allows you to leverage all matplotlib capability without having to set up the background basemap. You can use plot() to style points and lines, and you can also use more complex functions like contour(), quiver(), etc. Furthermore, with mplleaflet you no longer have to worry about setting up the basemap. Displaying continents or roads is determined automatically by the zoom level required to view the physical size of the data. You should use a different library if you need fine control over the basemap, or need a geographic projection other than spherical mercator.

Installation

Install mplleaflet from PyPI using $ pip install mplleaflet.

Development

If developing for mplleaflet, mplexporter is a git submodule with its Python package files placed under the mplleaflet package. The Makefile copies the files into the appropriate location.

$ git submodule init
$ git submodule update
$ make
$ pip install -e .

Dependencies

Optional

  • pyproj Only needed if you only use non-WGS-84 projections.
  • GeoPandas To make your life easier.
Owner
Jacob Wasserman
Jacob Wasserman
Movie recommendation using RASA, TigerGraph

Demo run: The below video will highlight the runtime of this setup and some sample real-time conversations using the power of RASA + TigerGraph, Steps

Sudha Vijayakumar 3 Sep 10, 2022
Graphing communities on Twitch.tv in a visually intuitive way

VisualizingTwitchCommunities This project maps communities of streamers on Twitch.tv based on shared viewership. The data is collected from the Twitch

Kiran Gershenfeld 312 Jan 07, 2023
Comparing USD and GBP Exchange Rates

Currency Data Visualization Comparing USD and GBP Exchange Rates This is a bar graph comparing GBP and USD exchange rates. I chose blue for the UK bec

5 Oct 28, 2021
The Metabolomics Integrator (MINT) is a post-processing tool for liquid chromatography-mass spectrometry (LCMS) based metabolomics.

MINT (Metabolomics Integrator) The Metabolomics Integrator (MINT) is a post-processing tool for liquid chromatography-mass spectrometry (LCMS) based m

Sören Wacker 0 May 04, 2022
Python ts2vg package provides high-performance algorithm implementations to build visibility graphs from time series data.

ts2vg: Time series to visibility graphs The Python ts2vg package provides high-performance algorithm implementations to build visibility graphs from t

Carlos Bergillos 26 Dec 17, 2022
Smarthome Dashboard with Grafana & InfluxDB

Smarthome Dashboard with Grafana & InfluxDB This is a complete overhaul of my Raspberry Dashboard done with Flask. I switched from sqlite to InfluxDB

6 Oct 20, 2022
A simple code for plotting figure, colorbar, and cropping with python

Python Plotting Tools This repository provides a python code to generate figures (e.g., curves and barcharts) that can be used in the paper to show th

Guanying Chen 134 Jan 02, 2023
A library for bridging Python and HTML/Javascript (via Svelte) for creating interactive visualizations

A library for bridging Python and HTML/Javascript (via Svelte) for creating interactive visualizations

Anthropic 98 Dec 27, 2022
This package creates clean and beautiful matplotlib plots that work on light and dark backgrounds

This package creates clean and beautiful matplotlib plots that work on light and dark backgrounds. Inspired by the work of Edward Tufte.

Nico Schlömer 205 Jan 07, 2023
China and India Population and GDP Visualization

China and India Population and GDP Visualization Historical Population Comparison between India and China This graph shows the population data of Indi

Nicolas De Mello 10 Oct 27, 2021
Rockstar - Makes you a Rockstar C++ Programmer in 2 minutes

Rockstar Rockstar is one amazing library, which will make you a Rockstar Programmer in just 2 minutes. In last decade, people learned C++ in 21 days.

4k Jan 05, 2023
Create animated and pretty Pandas Dataframe or Pandas Series

Rich DataFrame Create animated and pretty Pandas Dataframe or Pandas Series, as shown below: Installation pip install rich-dataframe Usage Minimal exa

Khuyen Tran 92 Dec 26, 2022
NW 2022 Hackathon Project by Angelique Clara Hanzel, Aryan Sonik, Damien Fung, Ramit Brata Biswas

Spiral-Data-Visualizer NW 2022 Hackathon Project by Angelique Clara Hanzell, Aryan Sonik, Damien Fung, Ramit Brata Biswas Description This project vis

Damien Fung 2 Jan 16, 2022
Tidy data structures, summaries, and visualisations for missing data

naniar naniar provides principled, tidy ways to summarise, visualise, and manipulate missing data with minimal deviations from the workflows in ggplot

Nicholas Tierney 611 Dec 22, 2022
📊 Extensions for Matplotlib

📊 Extensions for Matplotlib

Nico Schlömer 519 Dec 30, 2022
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

10k Jan 01, 2023
The Timescale NFT Starter Kit is a step-by-step guide to get up and running with collecting, storing, analyzing and visualizing NFT data from OpenSea, using PostgreSQL and TimescaleDB.

Timescale NFT Starter Kit The Timescale NFT Starter Kit is a step-by-step guide to get up and running with collecting, storing, analyzing and visualiz

Timescale 102 Dec 24, 2022
Extract and visualize information from Gurobi log files

GRBlogtools Extract information from Gurobi log files and generate pandas DataFrames or Excel worksheets for further processing. Also includes a wrapp

Gurobi Optimization 56 Nov 17, 2022
Numerical methods for ordinary differential equations: Euler, Improved Euler, Runge-Kutta.

Numerical methods Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary

Aleksey Korshuk 5 Apr 29, 2022
3D rendered visualization of the austrian monuments registry

Visualization of the Austrian Monuments Visualization of the monument landscape of the austrian monuments registry (Bundesdenkmalamt Denkmalverzeichni

Nikolai Janakiev 3 Oct 24, 2019