[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

Related tags

Deep LearningEOPSN
Overview

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021)

PyTorch implementation for EOPSN.

We propose open-set panoptic segmentation task and propose a new baseline called EOPSN. The code is based on Detectron2


Architecture

Qualitative Results

Usage

First, install requirements.

pip install -r requirements.txt

Then, install PyTorch 1.5+ and torchvision 0.6+:

conda install -c pytorch pytorch torchvision

Finally, you need to install Detectron2. To prevent version conflict, I recommand to install via included detectron2 folders. Regarding installation issue caused from detectron2, please refer to here.

cd detectron2
pip install -e ./

Data preparation

Download and extract COCO 2017 train and val images with annotations from http://cocodataset.org. We expect the directory structure to be the following:

datasets/coco
  annotations/  # annotation json files
  train2017/    # train images
  val2017/      # val images

To convert closed-set panoptic segmentation to open-set panoptic segmentation, run:

python prepare_unknown.py

The default setting is K=20, you can change here.

Training

To train EOPSN on a single node with 8 gpus for 30,000 iterations run:

python train_net.py --config configs/EOPSN_K20.yaml --num-gpus 8

Note that it requires pre-trained models (Void-suppression). Please download from Goolge Drive.

To train baseline (train) on a single node with 8 gpus for 45,000 iterations run:

python train_net.py --config configs/baseline_K20.yaml --num-gpus 8

If you want to log using WandB, you can add --wandb flag.

Evaluation

To evaluate EOPSN on COCO val5k with a single GPU run:

python train_net.py --config configs/EOPSN_K20.yaml --num-gpus 8 --resume --eval-only

Quantitative Results

Citations

@inproceedings{hwang2021exemplar,
    author = {Hwang, Jaedong and Oh, Seoung Wug and Lee, Joon-Young and Han, Bohyung},
    title = {Exemplar-Based Open-Set Panoptic Segmentation Network},
    booktitle = {CVPR},
    year = {2021},
}   

License

EOPSN is released under the CC BY-NC-SA 4.0 license. Please see the LICENSE file for more information. The detectron2 part is released under the Apache 2.0 license. Please see the detectron2/LICENSE file for more information.

Contributing

We actively welcome your pull requests!

Owner
Jaedong Hwang
graduate student @ Seoul National University, Korea
Jaedong Hwang
DeLag: Detecting Latency Degradation Patterns in Service-based Systems

DeLag: Detecting Latency Degradation Patterns in Service-based Systems Replication package of the work "DeLag: Detecting Latency Degradation Patterns

SEALABQualityGroup @ University of L'Aquila 2 Mar 24, 2022
This is an open source python repository for various python tests

Welcome to Py-tests This is an open source python repository for various python tests. This is in response to the hacktoberfest2021 challenge. It is a

Yada Martins Tisan 3 Oct 31, 2021
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
This is a Python wrapper for TA-LIB based on Cython instead of SWIG.

TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re

John Benediktsson 7.3k Jan 03, 2023