Code and training data for our ECCV 2016 paper on Unsupervised Learning

Overview

Shuffle and Learn (Shuffle Tuple)

Created by Ishan Misra

Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order Verification" link to paper.

This codebase contains the model and training data from our paper.

Introduction

Our code base is a mix of Python and C++ and uses the Caffe framework. Design decisions and some code is derived from the Fast-RCNN codebase by Ross Girshick.

Citing

If you find our code useful in your research, please consider citing:

@inproceedings{misra2016unsupervised,
  title={{Shuffle and Learn: Unsupervised Learning using Temporal Order Verification}},
  author={Misra, Ishan and Zitnick, C. Lawrence and Hebert, Martial},
  booktitle={ECCV},
  year={2016}
}

Benchmark Results

We summarize the results of finetuning our method here (details in the paper).

Action Recognition

| Dataset | Accuracy (split 1) | Accuracy (mean over splits) :--- | :--- | :--- | :--- UCF101 | 50.9 | 50.2 HMDB51 | 19.8 | 18.1

Pascal Action Classification (VOC2012): Coming soon

Pose estimation

  • FLIC: PCK (Mean, AUC) 84.7, 49.6
  • MPII: [email protected] (Upper, Full, AUC): 87.7, 85.8, 47.6

Object Detection

  • PASCAL VOC2007 test mAP of 42.4% using Fast RCNN.

We initialize conv1-5 using our unsupervised pre-training. We initialize fc6-8 randomly. We then follow the procedure from Krahenbuhl et al., 2016 to rescale our network and finetune all layers using their hyperparameters.

Surface Normal Prediction

  • NYUv2 (Coming soon)

Contents

  1. Requirements: software
  2. Models and Training Data
  3. Usage
  4. Utils

Requirements: software

  1. Requirements for Caffe and pycaffe (see: Caffe installation instructions)

Note: Caffe must be built with support for Python layers and OpenCV.

# In your Makefile.config, make sure to have this line uncommented
WITH_PYTHON_LAYER := 1
USE_OPENCV := 1

You can download a compatible fork of Caffe from here. Note that since our model requires Batch Normalization, you will need to have a fairly recent fork of caffe.

Models and Training Data

  1. Our model trained on tuples from UCF101 (train split 1, without using action labels) can be downloaded here.

  2. The tuples used for training our model can be downloaded as a zipped text file here. Each line of the file train01_image_keys.txt defines a tuple of three frames. The corresponding file train01_image_labs.txt has a binary label indicating whether the tuple is in the correct or incorrect order.

  3. Using the training tuples requires you to have the raw videos from the UCF101 dataset (link to videos). We extract frames from the videos and resize them such that the max dimension is 340 pixels. You can use ffmpeg to extract the frames. Example command: ffmpeg -i <video_name> -qscale 1 -f image2 <video_sub_name>/<video_sub_name>_%06d.jpg, where video_sub_name is the name of the raw video without the file extension.

Usage

  1. Once you have downloaded and formatted the UCF101 videos, you can use the networks/tuple_train.prototxt file to train your network. The only complicated part in the network definition is the data layer, which reads a tuple and a label. The data layer source file is in the python_layers subdirectory. Make sure to add this to your PYTHONPATH.
  2. Training for Action Recognition: We used the codebase from here
  3. Training for Pose Estimation: We used the codebase from here. Since this code does not use caffe for training a network, I have included a experimental data layer for caffe in python_layers/pose_data_layer.py

Utils

This repo also includes a bunch of utilities I used for training and debugging my models

  • python_layers/loss_tracking_layer: This layer tracks loss of each individual data point and its class label. This is useful for debugging as one can see the loss per class across epochs. Thanks to Abhinav Shrivastava for discussions on this.
  • model_training_utils: This is the wrapper code used to train the network if one wants to use the loss_tracking layer. These utilities not only track the loss, but also keep a log of various other statistics of the network - weights of the layers, norms of the weights, magnitude of change etc. For an example of how to use this check networks/tuple_exp.py. Thanks to Carl Doersch for discussions on this.
  • python_layers/multiple_image_multiple_label_data_layer: This is a fairly generic data layer that can read multiple images and data. It is based off my data layers repo.
Owner
Ishan Misra
Ishan Misra
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Weakly Supervised Text-to-SQL Parsing through Question Decomposition The official repository for the paper "Weakly Supervised Text-to-SQL Parsing thro

14 Dec 19, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
RobustVideoMatting and background composing in one model by using onnxruntime.

RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam

Quantum Liu 4 Apr 07, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa

Ryuichiro Hataya 102 Dec 28, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Andrew 70 Dec 12, 2022
A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

34 Dec 28, 2022
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
Trax — Deep Learning with Clear Code and Speed

Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us

Google 7.3k Dec 26, 2022
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
GUI for a Vocal Remover that uses Deep Neural Networks.

GUI for a Vocal Remover that uses Deep Neural Networks.

4.4k Jan 07, 2023
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021