Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking"

Overview

model_based_energy_constrained_compression

Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking" (https://openreview.net/pdf?id=BylBr3C9K7)

@inproceedings{yang2018energy,
  title={Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking},
  author={Yang, Haichuan and Zhu, Yuhao and Liu, Ji},
  booktitle={ICLR},
  year={2019}
}

Prerequisites

Python (3.6)
PyTorch 1.0

To use the ImageNet dataset, download the dataset and move validation images to labeled subfolders (e.g., using https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh)

Training and testing

example

To run the training with energy constraint on AlexNet,

python energy_proj_train.py --net alexnet --dataset imagenet --datadir [imagenet-folder with train and val folders] --batch_size 128 --lr 1e-3 --momentum 0.9 --l2wd 1e-4 --proj_int 10 --logdir ./log/path-of-log --num_workers 8 --exp_bdecay --epochs 30 --distill 0.5 --nodp --budget 0.2

usage

usage: energy_proj_train.py [-h] [--net NET] [--dataset DATASET]
                            [--datadir DATADIR] [--batch_size BATCH_SIZE]
                            [--val_batch_size VAL_BATCH_SIZE]
                            [--num_workers NUM_WORKERS] [--epochs EPOCHS]
                            [--lr LR] [--xlr XLR] [--l2wd L2WD]
                            [--xl2wd XL2WD] [--momentum MOMENTUM]
                            [--lr_decay LR_DECAY] [--lr_decay_e LR_DECAY_E]
                            [--lr_decay_add] [--proj_int PROJ_INT] [--nodp]
                            [--input_mask] [--randinit] [--pretrain PRETRAIN]
                            [--eval] [--seed SEED]
                            [--log_interval LOG_INTERVAL]
                            [--test_interval TEST_INTERVAL]
                            [--save_interval SAVE_INTERVAL] [--logdir LOGDIR]
                            [--distill DISTILL] [--budget BUDGET]
                            [--exp_bdecay] [--mgpu] [--skip1]

Model-Based Energy Constrained Training

optional arguments:
  -h, --help            show this help message and exit
  --net NET             network arch
  --dataset DATASET     dataset used in the experiment
  --datadir DATADIR     dataset dir in this machine
  --batch_size BATCH_SIZE
                        batch size for training
  --val_batch_size VAL_BATCH_SIZE
                        batch size for evaluation
  --num_workers NUM_WORKERS
                        number of workers for training loader
  --epochs EPOCHS       number of epochs to train
  --lr LR               learning rate
  --xlr XLR             learning rate for input mask
  --l2wd L2WD           l2 weight decay
  --xl2wd XL2WD         l2 weight decay (for input mask)
  --momentum MOMENTUM   momentum
  --proj_int PROJ_INT   how many batches for each projection
  --nodp                turn off dropout
  --input_mask          enable input mask
  --randinit            use random init
  --pretrain PRETRAIN   file to load pretrained model
  --eval                evaluate testset in the begining
  --seed SEED           random seed
  --log_interval LOG_INTERVAL
                        how many batches to wait before logging training
                        status
  --test_interval TEST_INTERVAL
                        how many epochs to wait before another test
  --save_interval SAVE_INTERVAL
                        how many epochs to wait before save a model
  --logdir LOGDIR       folder to save to the log
  --distill DISTILL     distill loss weight
  --budget BUDGET       energy budget (relative)
  --exp_bdecay          exponential budget decay
  --mgpu                enable using multiple gpus
  --skip1               skip the first W update
Owner
Haichuan Yang
Haichuan Yang
S3-plugin is a high performance PyTorch dataset library to efficiently access datasets stored in S3 buckets.

S3-plugin is a high performance PyTorch dataset library to efficiently access datasets stored in S3 buckets.

Amazon Web Services 138 Jan 03, 2023
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL components from published papers, standardized evaluation, and experiment management.

GCL: Graph Contrastive Learning Library for PyTorch 592 Jan 07, 2023
A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

878 Dec 30, 2022
PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

Henrique Morimitsu 105 Dec 16, 2022
A code copied from google-research which named motion-imitation was rewrited with PyTorch

motor-system Introduction A code copied from google-research which named motion-imitation was rewrited with PyTorch. More details can get from this pr

NewEra 6 Jan 08, 2022
This is an differentiable pytorch implementation of SIFT patch descriptor.

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
Pretrained EfficientNet, EfficientNet-Lite, MixNet, MobileNetV3 / V2, MNASNet A1 and B1, FBNet, Single-Path NAS

(Generic) EfficientNets for PyTorch A 'generic' implementation of EfficientNet, MixNet, MobileNetV3, etc. that covers most of the compute/parameter ef

Ross Wightman 1.5k Jan 01, 2023
higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.

higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization loops, of "meta" aspects of these

Facebook Research 1.5k Jan 03, 2023
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

1k Dec 28, 2022
Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.

Pretrained models for Pytorch (Work in progress) The goal of this repo is: to help to reproduce research papers results (transfer learning setups for

Remi 8.7k Dec 31, 2022
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Jan 06, 2023
A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

Fidelity Investments 56 Sep 13, 2022
PyTorch to TensorFlow Lite converter

PyTorch to TensorFlow Lite converter

Omer Ferhat Sarioglu 140 Dec 13, 2022
270 Dec 24, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Jan 07, 2023
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News March 3: v0.9.97 has various bug fixes and improvements: Bug fixes for NTXentLoss Efficiency improvement for AccuracyCalculator, by using torch i

Kevin Musgrave 5k Jan 02, 2023
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
lookahead optimizer (Lookahead Optimizer: k steps forward, 1 step back) for pytorch

lookahead optimizer for pytorch PyTorch implement of Lookahead Optimizer: k steps forward, 1 step back Usage: base_opt = torch.optim.Adam(model.parame

Liam 318 Dec 09, 2022
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022