TorchShard is a lightweight engine for slicing a PyTorch tensor into parallel shards

Overview

Documents | Projects | API References

TorchShard is a lightweight engine for slicing a PyTorch tensor into parallel shards. It can reduce GPU memory and scale up the training when the model has massive linear layers (e.g., ViT, BERT and GPT) or huge classes (millions). It has the same API design as PyTorch.

Installation

pip install torchshard

More options in INSTALL.md.

Usage

import torchshard as ts

ts.init_process_group(group_size=2)                       # init parallel groups

m = torch.nn.Sequential(
    torch.nn.Linear(20, 30, bias=True),               
    ts.nn.ParallelLinear(30, 30, bias=True, dim=None),    # equal to nn.Linear()
    ts.nn.ParallelLinear(30, 30, bias=True, dim=0),       # parallel in row dimension
    ts.nn.ParallelLinear(30, 30, bias=True, dim=1),       # parallel in column dimension
).cuda()

x = m(x)                                                  # forward
loss = ts.nn.functional.parallel_cross_entropy(x, y)      # parallel loss function
loss.backward()                                           # backward

torch.save(
  ts.collect_state_dict(m, m.state_dict()), 'm.pt')       # save model state

Performance

The following figure is a showcase of training ResNet-50 on 8 NVIDIA TITAN-XP (12196 MiB) GPUs with scaling up classes from 1000 → 1 Million. The input size is 224 x 224, and the batch size is 256. Parallelism is with 8-way data parallel and 8-way model parallel.

The following figure shows training minGPT on 8 NVIDIA TITAN-XP (12196 MiB) GPUs with scaling up parameters from 10 Million → 808 Million. The input size is 32 x 32, and the batch size is 16. Parallelism is with 1-way data parallel and 8-way model parallel.

Contributing

The TorchShard welcomes your expertise and enthusiasm!

If you are interested in torchshard, you are welcome to help

  • polish code and develop new features
  • develop high-quality tutorials, projects, and advanced materials

Direct pull requests are welcome. Contact: kaiyuyue [at] umd.edu.

Citing TorchShard

If you think TorchShard is helpful in your research and consider to cite it, please use the following BibTeX entry.

@misc{torchshard2021,
  author =       {Kaiyu Yue},
  title =        {TorchShard},
  howpublished = {\url{https://github.com/KaiyuYue/torchshard}},
  year =         {2021}
}
Comments
  • Future Planinig on this project.

    Future Planinig on this project.

    Hello Kaiyu, I love this awesome project. The API design is elegant and simple and the software is lightweight and user-friendly. My understanding is that this project has realized a series of PyTorch wrappers for tensor slicing.

    1. I am curious about the future planning of this project.
    2. Is there some overlap in functionality between torchshard and N-D parallelism proposed in ColossalAI.
    3. How is compatibility with ZeRO? According to am+zero example, the memory footprint has a little change after combination torchshard with ZeRO.
    opened by feifeibear 2
  • Which one is faster?

    Which one is faster?

    Thanks for contributing this great lib. I have one question. Which one is faster (in speed) between dim=0and dim=1? The documentations seem to only contain accuracy results.

    opened by NOBLES5E 2
  • 8 gpus test example raise error.

    8 gpus test example raise error.

    When I do Unit Tests, it can pass when use two gpu devices, run command below: CUDA_VISIBLE_DEVICES=0,1 python3 -m unittest discover -v -s tests

    But I do Unit Tests with eight gpu devices, it raise ncclSystemError. run command: CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3 -m unittest discover -v -s tests raise error: RuntimeError: NCCL error in ../torch/lib/c10d/ProcessGroupNCCL.cpp:825, unhandled system error, NCCL version 2.7.8 ncclSystemError: System call (socket, malloc, munmap, etc) failed.

    Is it necessary to pass unittest in eights gpu devices?

    opened by JiaquanYe 1
  • Error?

    Error?

    Hi, thanks for the excellent job! When I install it from pip, and

    import torchshard as ts
    ts.init_process_group(group_size=2) 
    

    The AttributeError occurs:

    AttributeError: module 'torchshard' has no attribute 'init_process_group'
    
    opened by WangWenhao0716 1
  • Multi-node setting?

    Multi-node setting?

    https://github.com/KaiyuYue/torchshard/blob/89e21def180bf6063ceb2e312a61631173abc7e7/projects/minGPT/main.py#L150

    I have noticed that the group_size is set to world_size in examples, but in fact the group_size can be set to other numbers according to my understanding.

    https://github.com/KaiyuYue/torchshard/blob/main/torchshard/distributed/core.py#L18

    I have also found that the get_world_size() will return the number of all processes.

    The two findings make me confused in a multi-node setting, say 2 nodes with each node with 2 processes.

    If the group_size is 2, then there are 2 distinct groups besides the default group (w/ overlap). However, get_world_size() is used without specifying a group can make a layer be splitted to 4 parts, which is expected to be 2 in our case.

    Correct me if I am wrong.

    Good Issue 
    opened by GeneZC 1
  • Is it possible to collect state dict in cpu?

    Is it possible to collect state dict in cpu?

    When I finish one epoch in trianing, the main_worker function will call ts.collect_state_dict(model, state_dict). But because the limit of GPU resource, it will raise Out of Memory in my machine, when call ts.collect_state_dict(model, state_dict). I found that will gather the state_dict in GPU, is it anyway to gather in CPU?

    Good Issue 
    opened by JiaquanYe 2
Releases(v0.1)
Owner
Kaiyu Yue
Kaiyu Yue
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
High-level batteries-included neural network training library for Pytorch

Pywick High-Level Training framework for Pytorch Pywick is a high-level Pytorch training framework that aims to get you up and running quickly with st

382 Dec 06, 2022
PyTorch toolkit for biomedical imaging

farabio is a minimal PyTorch toolkit for out-of-the-box deep learning support in biomedical imaging. For further information, see Wikis and Docs.

San Askaruly 47 Dec 28, 2022
lookahead optimizer (Lookahead Optimizer: k steps forward, 1 step back) for pytorch

lookahead optimizer for pytorch PyTorch implement of Lookahead Optimizer: k steps forward, 1 step back Usage: base_opt = torch.optim.Adam(model.parame

Liam 318 Dec 09, 2022
A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

Fidelity Investments 56 Sep 13, 2022
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Jan 06, 2023
PyTorch extensions for fast R&D prototyping and Kaggle farming

Pytorch-toolbelt A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming: What

Eugene Khvedchenya 1.3k Jan 05, 2023
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Tez is a super-simple and lightweight Trainer for PyTorch. It also comes with many utils that you can use to tackle over 90% of deep learning projects in PyTorch.

Tez: a simple pytorch trainer NOTE: Currently, we are not accepting any pull requests! All PRs will be closed. If you want a feature or something does

abhishek thakur 1.1k Jan 04, 2023
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Jan 07, 2023
Distiller is an open-source Python package for neural network compression research.

Wiki and tutorials | Documentation | Getting Started | Algorithms | Design | FAQ Distiller is an open-source Python package for neural network compres

Intel Labs 4.1k Dec 28, 2022
PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

Henrique Morimitsu 105 Dec 16, 2022
A few Windows specific scripts for PyTorch

It is a repo that contains scripts that makes using PyTorch on Windows easier. Easy Installation Update: Starting from 0.4.0, you can go to the offici

408 Dec 15, 2022
PyNIF3D is an open-source PyTorch-based library for research on neural implicit functions (NIF)-based 3D geometry representation.

PyNIF3D is an open-source PyTorch-based library for research on neural implicit functions (NIF)-based 3D geometry representation. It aims to accelerate research by providing a modular design that all

Preferred Networks, Inc. 96 Nov 28, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
The goal of this library is to generate more helpful exception messages for numpy/pytorch matrix algebra expressions.

Tensor Sensor See article Clarifying exceptions and visualizing tensor operations in deep learning code. One of the biggest challenges when writing co

Terence Parr 704 Dec 14, 2022
A simple way to train and use PyTorch models with multi-GPU, TPU, mixed-precision

🤗 Accelerate was created for PyTorch users who like to write the training loop of PyTorch models but are reluctant to write and maintain the boilerplate code needed to use multi-GPUs/TPU/fp16.

Hugging Face 3.5k Jan 08, 2023
Implementation of LambdaNetworks, a new approach to image recognition that reaches SOTA with less compute

Lambda Networks - Pytorch Implementation of λ Networks, a new approach to image recognition that reaches SOTA on ImageNet. The new method utilizes λ l

Phil Wang 1.5k Jan 07, 2023
This is an differentiable pytorch implementation of SIFT patch descriptor.

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022