Pretrained EfficientNet, EfficientNet-Lite, MixNet, MobileNetV3 / V2, MNASNet A1 and B1, FBNet, Single-Path NAS

Overview

(Generic) EfficientNets for PyTorch

A 'generic' implementation of EfficientNet, MixNet, MobileNetV3, etc. that covers most of the compute/parameter efficient architectures derived from the MobileNet V1/V2 block sequence, including those found via automated neural architecture search.

All models are implemented by GenEfficientNet or MobileNetV3 classes, with string based architecture definitions to configure the block layouts (idea from here)

What's New

Aug 19, 2020

  • Add updated PyTorch trained EfficientNet-B3 weights trained by myself with timm (82.1 top-1)
  • Add PyTorch trained EfficientNet-Lite0 contributed by @hal-314 (75.5 top-1)
  • Update ONNX and Caffe2 export / utility scripts to work with latest PyTorch / ONNX
  • ONNX runtime based validation script added
  • activations (mostly) brought in sync with timm equivalents

April 5, 2020

  • Add some newly trained MobileNet-V2 models trained with latest h-params, rand augment. They compare quite favourably to EfficientNet-Lite
    • 3.5M param MobileNet-V2 100 @ 73%
    • 4.5M param MobileNet-V2 110d @ 75%
    • 6.1M param MobileNet-V2 140 @ 76.5%
    • 5.8M param MobileNet-V2 120d @ 77.3%

March 23, 2020

  • Add EfficientNet-Lite models w/ weights ported from Tensorflow TPU
  • Add PyTorch trained MobileNet-V3 Large weights with 75.77% top-1
  • IMPORTANT CHANGE (if training from scratch) - weight init changed to better match Tensorflow impl, set fix_group_fanout=False in initialize_weight_goog for old behavior

Feb 12, 2020

  • Add EfficientNet-L2 and B0-B7 NoisyStudent weights ported from Tensorflow TPU
  • Port new EfficientNet-B8 (RandAugment) weights from TF TPU, these are different than the B8 AdvProp, different input normalization.
  • Add RandAugment PyTorch trained EfficientNet-ES (EdgeTPU-Small) weights with 78.1 top-1. Trained by Andrew Lavin

Jan 22, 2020

  • Update weights for EfficientNet B0, B2, B3 and MixNet-XL with latest RandAugment trained weights. Trained with (https://github.com/rwightman/pytorch-image-models)
  • Fix torchscript compatibility for PyTorch 1.4, add torchscript support for MixedConv2d using ModuleDict
  • Test models, torchscript, onnx export with PyTorch 1.4 -- no issues

Nov 22, 2019

  • New top-1 high! Ported official TF EfficientNet AdvProp (https://arxiv.org/abs/1911.09665) weights and B8 model spec. Created a new set of ap models since they use a different preprocessing (Inception mean/std) from the original EfficientNet base/AA/RA weights.

Nov 15, 2019

  • Ported official TF MobileNet-V3 float32 large/small/minimalistic weights
  • Modifications to MobileNet-V3 model and components to support some additional config needed for differences between TF MobileNet-V3 and mine

Oct 30, 2019

  • Many of the models will now work with torch.jit.script, MixNet being the biggest exception
  • Improved interface for enabling torchscript or ONNX export compatible modes (via config)
  • Add JIT optimized mem-efficient Swish/Mish autograd.fn in addition to memory-efficient autgrad.fn
  • Activation factory to select best version of activation by name or override one globally
  • Add pretrained checkpoint load helper that handles input conv and classifier changes

Oct 27, 2019

Models

Implemented models include:

I originally implemented and trained some these models with code here, this repository contains just the GenEfficientNet models, validation, and associated ONNX/Caffe2 export code.

Pretrained

I've managed to train several of the models to accuracies close to or above the originating papers and official impl. My training code is here: https://github.com/rwightman/pytorch-image-models

Model [email protected] (Err) [email protected] (Err) Param#(M) MAdds(M) Image Scaling Resolution Crop
efficientnet_b3 82.240 (17.760) 96.116 (3.884) 12.23 TBD bicubic 320 1.0
efficientnet_b3 82.076 (17.924) 96.020 (3.980) 12.23 TBD bicubic 300 0.904
mixnet_xl 81.074 (18.926) 95.282 (4.718) 11.90 TBD bicubic 256 1.0
efficientnet_b2 80.612 (19.388) 95.318 (4.682) 9.1 TBD bicubic 288 1.0
mixnet_xl 80.476 (19.524) 94.936 (5.064) 11.90 TBD bicubic 224 0.875
efficientnet_b2 80.288 (19.712) 95.166 (4.834) 9.1 1003 bicubic 260 0.890
mixnet_l 78.976 (21.024 94.184 (5.816) 7.33 TBD bicubic 224 0.875
efficientnet_b1 78.692 (21.308) 94.086 (5.914) 7.8 694 bicubic 240 0.882
efficientnet_es 78.066 (21.934) 93.926 (6.074) 5.44 TBD bicubic 224 0.875
efficientnet_b0 77.698 (22.302) 93.532 (6.468) 5.3 390 bicubic 224 0.875
mobilenetv2_120d 77.294 (22.706 93.502 (6.498) 5.8 TBD bicubic 224 0.875
mixnet_m 77.256 (22.744) 93.418 (6.582) 5.01 353 bicubic 224 0.875
mobilenetv2_140 76.524 (23.476) 92.990 (7.010) 6.1 TBD bicubic 224 0.875
mixnet_s 75.988 (24.012) 92.794 (7.206) 4.13 TBD bicubic 224 0.875
mobilenetv3_large_100 75.766 (24.234) 92.542 (7.458) 5.5 TBD bicubic 224 0.875
mobilenetv3_rw 75.634 (24.366) 92.708 (7.292) 5.5 219 bicubic 224 0.875
efficientnet_lite0 75.472 (24.528) 92.520 (7.480) 4.65 TBD bicubic 224 0.875
mnasnet_a1 75.448 (24.552) 92.604 (7.396) 3.9 312 bicubic 224 0.875
fbnetc_100 75.124 (24.876) 92.386 (7.614) 5.6 385 bilinear 224 0.875
mobilenetv2_110d 75.052 (24.948) 92.180 (7.820) 4.5 TBD bicubic 224 0.875
mnasnet_b1 74.658 (25.342) 92.114 (7.886) 4.4 315 bicubic 224 0.875
spnasnet_100 74.084 (25.916) 91.818 (8.182) 4.4 TBD bilinear 224 0.875
mobilenetv2_100 72.978 (27.022) 91.016 (8.984) 3.5 TBD bicubic 224 0.875

More pretrained models to come...

Ported Weights

The weights ported from Tensorflow checkpoints for the EfficientNet models do pretty much match accuracy in Tensorflow once a SAME convolution padding equivalent is added, and the same crop factors, image scaling, etc (see table) are used via cmd line args.

IMPORTANT:

  • Tensorflow ported weights for EfficientNet AdvProp (AP), EfficientNet EdgeTPU, EfficientNet-CondConv, EfficientNet-Lite, and MobileNet-V3 models use Inception style (0.5, 0.5, 0.5) for mean and std.
  • Enabling the Tensorflow preprocessing pipeline with --tf-preprocessing at validation time will improve scores by 0.1-0.5%, very close to original TF impl.

To run validation for tf_efficientnet_b5: python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b5 -b 64 --img-size 456 --crop-pct 0.934 --interpolation bicubic

To run validation w/ TF preprocessing for tf_efficientnet_b5: python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b5 -b 64 --img-size 456 --tf-preprocessing

To run validation for a model with Inception preprocessing, ie EfficientNet-B8 AdvProp: python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b8_ap -b 48 --num-gpu 2 --img-size 672 --crop-pct 0.954 --mean 0.5 --std 0.5

Model [email protected] (Err) [email protected] (Err) Param # Image Scaling Image Size Crop
tf_efficientnet_l2_ns *tfp 88.352 (11.648) 98.652 (1.348) 480 bicubic 800 N/A
tf_efficientnet_l2_ns TBD TBD 480 bicubic 800 0.961
tf_efficientnet_l2_ns_475 88.234 (11.766) 98.546 (1.454) 480 bicubic 475 0.936
tf_efficientnet_l2_ns_475 *tfp 88.172 (11.828) 98.566 (1.434) 480 bicubic 475 N/A
tf_efficientnet_b7_ns *tfp 86.844 (13.156) 98.084 (1.916) 66.35 bicubic 600 N/A
tf_efficientnet_b7_ns 86.840 (13.160) 98.094 (1.906) 66.35 bicubic 600 N/A
tf_efficientnet_b6_ns 86.452 (13.548) 97.882 (2.118) 43.04 bicubic 528 N/A
tf_efficientnet_b6_ns *tfp 86.444 (13.556) 97.880 (2.120) 43.04 bicubic 528 N/A
tf_efficientnet_b5_ns *tfp 86.064 (13.936) 97.746 (2.254) 30.39 bicubic 456 N/A
tf_efficientnet_b5_ns 86.088 (13.912) 97.752 (2.248) 30.39 bicubic 456 N/A
tf_efficientnet_b8_ap *tfp 85.436 (14.564) 97.272 (2.728) 87.4 bicubic 672 N/A
tf_efficientnet_b8 *tfp 85.384 (14.616) 97.394 (2.606) 87.4 bicubic 672 N/A
tf_efficientnet_b8 85.370 (14.630) 97.390 (2.610) 87.4 bicubic 672 0.954
tf_efficientnet_b8_ap 85.368 (14.632) 97.294 (2.706) 87.4 bicubic 672 0.954
tf_efficientnet_b4_ns *tfp 85.298 (14.702) 97.504 (2.496) 19.34 bicubic 380 N/A
tf_efficientnet_b4_ns 85.162 (14.838) 97.470 (2.530) 19.34 bicubic 380 0.922
tf_efficientnet_b7_ap *tfp 85.154 (14.846) 97.244 (2.756) 66.35 bicubic 600 N/A
tf_efficientnet_b7_ap 85.118 (14.882) 97.252 (2.748) 66.35 bicubic 600 0.949
tf_efficientnet_b7 *tfp 84.940 (15.060) 97.214 (2.786) 66.35 bicubic 600 N/A
tf_efficientnet_b7 84.932 (15.068) 97.208 (2.792) 66.35 bicubic 600 0.949
tf_efficientnet_b6_ap 84.786 (15.214) 97.138 (2.862) 43.04 bicubic 528 0.942
tf_efficientnet_b6_ap *tfp 84.760 (15.240) 97.124 (2.876) 43.04 bicubic 528 N/A
tf_efficientnet_b5_ap *tfp 84.276 (15.724) 96.932 (3.068) 30.39 bicubic 456 N/A
tf_efficientnet_b5_ap 84.254 (15.746) 96.976 (3.024) 30.39 bicubic 456 0.934
tf_efficientnet_b6 *tfp 84.140 (15.860) 96.852 (3.148) 43.04 bicubic 528 N/A
tf_efficientnet_b6 84.110 (15.890) 96.886 (3.114) 43.04 bicubic 528 0.942
tf_efficientnet_b3_ns *tfp 84.054 (15.946) 96.918 (3.082) 12.23 bicubic 300 N/A
tf_efficientnet_b3_ns 84.048 (15.952) 96.910 (3.090) 12.23 bicubic 300 .904
tf_efficientnet_b5 *tfp 83.822 (16.178) 96.756 (3.244) 30.39 bicubic 456 N/A
tf_efficientnet_b5 83.812 (16.188) 96.748 (3.252) 30.39 bicubic 456 0.934
tf_efficientnet_b4_ap *tfp 83.278 (16.722) 96.376 (3.624) 19.34 bicubic 380 N/A
tf_efficientnet_b4_ap 83.248 (16.752) 96.388 (3.612) 19.34 bicubic 380 0.922
tf_efficientnet_b4 83.022 (16.978) 96.300 (3.700) 19.34 bicubic 380 0.922
tf_efficientnet_b4 *tfp 82.948 (17.052) 96.308 (3.692) 19.34 bicubic 380 N/A
tf_efficientnet_b2_ns *tfp 82.436 (17.564) 96.268 (3.732) 9.11 bicubic 260 N/A
tf_efficientnet_b2_ns 82.380 (17.620) 96.248 (3.752) 9.11 bicubic 260 0.89
tf_efficientnet_b3_ap *tfp 81.882 (18.118) 95.662 (4.338) 12.23 bicubic 300 N/A
tf_efficientnet_b3_ap 81.828 (18.172) 95.624 (4.376) 12.23 bicubic 300 0.904
tf_efficientnet_b3 81.636 (18.364) 95.718 (4.282) 12.23 bicubic 300 0.904
tf_efficientnet_b3 *tfp 81.576 (18.424) 95.662 (4.338) 12.23 bicubic 300 N/A
tf_efficientnet_lite4 81.528 (18.472) 95.668 (4.332) 13.00 bilinear 380 0.92
tf_efficientnet_b1_ns *tfp 81.514 (18.486) 95.776 (4.224) 7.79 bicubic 240 N/A
tf_efficientnet_lite4 *tfp 81.502 (18.498) 95.676 (4.324) 13.00 bilinear 380 N/A
tf_efficientnet_b1_ns 81.388 (18.612) 95.738 (4.262) 7.79 bicubic 240 0.88
tf_efficientnet_el 80.534 (19.466) 95.190 (4.810) 10.59 bicubic 300 0.904
tf_efficientnet_el *tfp 80.476 (19.524) 95.200 (4.800) 10.59 bicubic 300 N/A
tf_efficientnet_b2_ap *tfp 80.420 (19.580) 95.040 (4.960) 9.11 bicubic 260 N/A
tf_efficientnet_b2_ap 80.306 (19.694) 95.028 (4.972) 9.11 bicubic 260 0.890
tf_efficientnet_b2 *tfp 80.188 (19.812) 94.974 (5.026) 9.11 bicubic 260 N/A
tf_efficientnet_b2 80.086 (19.914) 94.908 (5.092) 9.11 bicubic 260 0.890
tf_efficientnet_lite3 79.812 (20.188) 94.914 (5.086) 8.20 bilinear 300 0.904
tf_efficientnet_lite3 *tfp 79.734 (20.266) 94.838 (5.162) 8.20 bilinear 300 N/A
tf_efficientnet_b1_ap *tfp 79.532 (20.468) 94.378 (5.622) 7.79 bicubic 240 N/A
tf_efficientnet_cc_b1_8e *tfp 79.464 (20.536) 94.492 (5.508) 39.7 bicubic 240 0.88
tf_efficientnet_cc_b1_8e 79.298 (20.702) 94.364 (5.636) 39.7 bicubic 240 0.88
tf_efficientnet_b1_ap 79.278 (20.722) 94.308 (5.692) 7.79 bicubic 240 0.88
tf_efficientnet_b1 *tfp 79.172 (20.828) 94.450 (5.550) 7.79 bicubic 240 N/A
tf_efficientnet_em *tfp 78.958 (21.042) 94.458 (5.542) 6.90 bicubic 240 N/A
tf_efficientnet_b0_ns *tfp 78.806 (21.194) 94.496 (5.504) 5.29 bicubic 224 N/A
tf_mixnet_l *tfp 78.846 (21.154) 94.212 (5.788) 7.33 bilinear 224 N/A
tf_efficientnet_b1 78.826 (21.174) 94.198 (5.802) 7.79 bicubic 240 0.88
tf_mixnet_l 78.770 (21.230) 94.004 (5.996) 7.33 bicubic 224 0.875
tf_efficientnet_em 78.742 (21.258) 94.332 (5.668) 6.90 bicubic 240 0.875
tf_efficientnet_b0_ns 78.658 (21.342) 94.376 (5.624) 5.29 bicubic 224 0.875
tf_efficientnet_cc_b0_8e *tfp 78.314 (21.686) 93.790 (6.210) 24.0 bicubic 224 0.875
tf_efficientnet_cc_b0_8e 77.908 (22.092) 93.656 (6.344) 24.0 bicubic 224 0.875
tf_efficientnet_cc_b0_4e *tfp 77.746 (22.254) 93.552 (6.448) 13.3 bicubic 224 0.875
tf_efficientnet_cc_b0_4e 77.304 (22.696) 93.332 (6.668) 13.3 bicubic 224 0.875
tf_efficientnet_es *tfp 77.616 (22.384) 93.750 (6.250) 5.44 bicubic 224 N/A
tf_efficientnet_lite2 *tfp 77.544 (22.456) 93.800 (6.200) 6.09 bilinear 260 N/A
tf_efficientnet_lite2 77.460 (22.540) 93.746 (6.254) 6.09 bicubic 260 0.89
tf_efficientnet_b0_ap *tfp 77.514 (22.486) 93.576 (6.424) 5.29 bicubic 224 N/A
tf_efficientnet_es 77.264 (22.736) 93.600 (6.400) 5.44 bicubic 224 N/A
tf_efficientnet_b0 *tfp 77.258 (22.742) 93.478 (6.522) 5.29 bicubic 224 N/A
tf_efficientnet_b0_ap 77.084 (22.916) 93.254 (6.746) 5.29 bicubic 224 0.875
tf_mixnet_m *tfp 77.072 (22.928) 93.368 (6.632) 5.01 bilinear 224 N/A
tf_mixnet_m 76.950 (23.050) 93.156 (6.844) 5.01 bicubic 224 0.875
tf_efficientnet_b0 76.848 (23.152) 93.228 (6.772) 5.29 bicubic 224 0.875
tf_efficientnet_lite1 *tfp 76.764 (23.236) 93.326 (6.674) 5.42 bilinear 240 N/A
tf_efficientnet_lite1 76.638 (23.362) 93.232 (6.768) 5.42 bicubic 240 0.882
tf_mixnet_s *tfp 75.800 (24.200) 92.788 (7.212) 4.13 bilinear 224 N/A
tf_mobilenetv3_large_100 *tfp 75.768 (24.232) 92.710 (7.290) 5.48 bilinear 224 N/A
tf_mixnet_s 75.648 (24.352) 92.636 (7.364) 4.13 bicubic 224 0.875
tf_mobilenetv3_large_100 75.516 (24.484) 92.600 (7.400) 5.48 bilinear 224 0.875
tf_efficientnet_lite0 *tfp 75.074 (24.926) 92.314 (7.686) 4.65 bilinear 224 N/A
tf_efficientnet_lite0 74.842 (25.158) 92.170 (7.830) 4.65 bicubic 224 0.875
tf_mobilenetv3_large_075 *tfp 73.730 (26.270) 91.616 (8.384) 3.99 bilinear 224 N/A
tf_mobilenetv3_large_075 73.442 (26.558) 91.352 (8.648) 3.99 bilinear 224 0.875
tf_mobilenetv3_large_minimal_100 *tfp 72.678 (27.322) 90.860 (9.140) 3.92 bilinear 224 N/A
tf_mobilenetv3_large_minimal_100 72.244 (27.756) 90.636 (9.364) 3.92 bilinear 224 0.875
tf_mobilenetv3_small_100 *tfp 67.918 (32.082) 87.958 (12.042 2.54 bilinear 224 N/A
tf_mobilenetv3_small_100 67.918 (32.082) 87.662 (12.338) 2.54 bilinear 224 0.875
tf_mobilenetv3_small_075 *tfp 66.142 (33.858) 86.498 (13.502) 2.04 bilinear 224 N/A
tf_mobilenetv3_small_075 65.718 (34.282) 86.136 (13.864) 2.04 bilinear 224 0.875
tf_mobilenetv3_small_minimal_100 *tfp 63.378 (36.622) 84.802 (15.198) 2.04 bilinear 224 N/A
tf_mobilenetv3_small_minimal_100 62.898 (37.102) 84.230 (15.770) 2.04 bilinear 224 0.875

*tfp models validated with tf-preprocessing pipeline

Google tf and tflite weights ported from official Tensorflow repositories

Usage

Environment

All development and testing has been done in Conda Python 3 environments on Linux x86-64 systems, specifically Python 3.6.x, 3.7.x, 3.8.x.

Users have reported that a Python 3 Anaconda install in Windows works. I have not verified this myself.

PyTorch versions 1.4, 1.5, 1.6 have been tested with this code.

I've tried to keep the dependencies minimal, the setup is as per the PyTorch default install instructions for Conda:

conda create -n torch-env
conda activate torch-env
conda install -c pytorch pytorch torchvision cudatoolkit=10.2

PyTorch Hub

Models can be accessed via the PyTorch Hub API

>>> torch.hub.list('rwightman/gen-efficientnet-pytorch')
['efficientnet_b0', ...]
>>> model = torch.hub.load('rwightman/gen-efficientnet-pytorch', 'efficientnet_b0', pretrained=True)
>>> model.eval()
>>> output = model(torch.randn(1,3,224,224))

Pip

This package can be installed via pip.

Install (after conda env/install):

pip install geffnet

Eval use:

>>> import geffnet
>>> m = geffnet.create_model('mobilenetv3_large_100', pretrained=True)
>>> m.eval()

Train use:

>>> import geffnet
>>> # models can also be created by using the entrypoint directly
>>> m = geffnet.efficientnet_b2(pretrained=True, drop_rate=0.25, drop_connect_rate=0.2)
>>> m.train()

Create in a nn.Sequential container, for fast.ai, etc:

>>> import geffnet
>>> m = geffnet.mixnet_l(pretrained=True, drop_rate=0.25, drop_connect_rate=0.2, as_sequential=True)

Exporting

Scripts are included to

  • export models to ONNX (onnx_export.py)
  • optimized ONNX graph (onnx_optimize.py or onnx_validate.py w/ --onnx-output-opt arg)
  • validate with ONNX runtime (onnx_validate.py)
  • convert ONNX model to Caffe2 (onnx_to_caffe.py)
  • validate in Caffe2 (caffe2_validate.py)
  • benchmark in Caffe2 w/ FLOPs, parameters output (caffe2_benchmark.py)

As an example, to export the MobileNet-V3 pretrained model and then run an Imagenet validation:

python onnx_export.py --model mobilenetv3_large_100 ./mobilenetv3_100.onnx
python onnx_validate.py /imagenet/validation/ --onnx-input ./mobilenetv3_100.onnx 

These scripts were tested to be working as of PyTorch 1.6 and ONNX 1.7 w/ ONNX runtime 1.4. Caffe2 compatible export now requires additional args mentioned in the export script (not needed in earlier versions).

Export Notes

  1. The TF ported weights with the 'SAME' conv padding activated cannot be exported to ONNX unless _EXPORTABLE flag in config.py is set to True. Use config.set_exportable(True) as in the onnx_export.py script.
  2. TF ported models with 'SAME' padding will have the padding fixed at export time to the resolution used for export. Even though dynamic padding is supported in opset >= 11, I can't get it working.
  3. ONNX optimize facility doesn't work reliably in PyTorch 1.6 / ONNX 1.7. Fortunately, the onnxruntime based inference is working very well now and includes on the fly optimization.
  4. ONNX / Caffe2 export/import frequently breaks with different PyTorch and ONNX version releases. Please check their respective issue trackers before filing issues here.
Owner
Ross Wightman
Always learning, constantly curious. Building ML/AI systems, watching loss curves.
Ross Wightman
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
Pretrained EfficientNet, EfficientNet-Lite, MixNet, MobileNetV3 / V2, MNASNet A1 and B1, FBNet, Single-Path NAS

(Generic) EfficientNets for PyTorch A 'generic' implementation of EfficientNet, MixNet, MobileNetV3, etc. that covers most of the compute/parameter ef

Ross Wightman 1.5k Jan 01, 2023
Official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis.

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
PyTorch to TensorFlow Lite converter

PyTorch to TensorFlow Lite converter

Omer Ferhat Sarioglu 140 Dec 13, 2022
A tiny package to compare two neural networks in PyTorch

Compare neural networks by their feature similarity

Anand Krishnamoorthy 180 Dec 30, 2022
270 Dec 24, 2022
Pytorch bindings for Fortran

Pytorch bindings for Fortran

Dmitry Alexeev 46 Dec 29, 2022
A simple way to train and use PyTorch models with multi-GPU, TPU, mixed-precision

🤗 Accelerate was created for PyTorch users who like to write the training loop of PyTorch models but are reluctant to write and maintain the boilerplate code needed to use multi-GPUs/TPU/fp16.

Hugging Face 3.5k Jan 08, 2023
Riemannian Adaptive Optimization Methods with pytorch optim

geoopt Manifold aware pytorch.optim. Unofficial implementation for “Riemannian Adaptive Optimization Methods” ICLR2019 and more. Installation Make sur

642 Jan 03, 2023
PyTorch wrappers for using your model in audacity!

PyTorch wrappers for using your model in audacity!

130 Dec 14, 2022
PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

Henrique Morimitsu 105 Dec 16, 2022
Code snippets created for the PyTorch discussion board

PyTorch misc Collection of code snippets I've written for the PyTorch discussion board. All scripts were testes using the PyTorch 1.0 preview and torc

461 Dec 26, 2022
A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API

micrograd A tiny Autograd engine (with a bite! :)). Implements backpropagation (reverse-mode autodiff) over a dynamically built DAG and a small neural

Andrej 3.5k Jan 08, 2023
A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

Fidelity Investments 56 Sep 13, 2022
A PyTorch implementation of L-BFGS.

PyTorch-LBFGS: A PyTorch Implementation of L-BFGS Authors: Hao-Jun Michael Shi (Northwestern University) and Dheevatsa Mudigere (Facebook) What is it?

Hao-Jun Michael Shi 478 Dec 27, 2022
PyTorch toolkit for biomedical imaging

farabio is a minimal PyTorch toolkit for out-of-the-box deep learning support in biomedical imaging. For further information, see Wikis and Docs.

San Askaruly 47 Dec 28, 2022
Use Jax functions in Pytorch with DLPack

Use Jax functions in Pytorch with DLPack

Phil Wang 106 Dec 17, 2022
Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking"

model_based_energy_constrained_compression Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and

Haichuan Yang 16 Jun 15, 2022
Differentiable ODE solvers with full GPU support and O(1)-memory backpropagation.

PyTorch Implementation of Differentiable ODE Solvers This library provides ordinary differential equation (ODE) solvers implemented in PyTorch. Backpr

Ricky Chen 4.4k Jan 04, 2023
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023