PyTorch implementations of normalizing flow and its variants.

Overview

Normalizing Flows by PyTorch

Codacy Badge

PyTorch implementations of the networks for normalizing flows.

Models

Currently, following networks are implemented.

  • Planar flow
    • Rezende and Mohamed 2015, "Variational Inference with Normalizing Flows," [arXiv]
  • RealNVP
    • Dinh et al., 2016, "Density Estimation using Real NVP," [arXiv]
  • Glow
    • Kingma and Dhariwal 2018, "Glow: Generative Flow with Invertible 1x1 Convolutions," [arXiv] [code]
  • Flow++
    • Ho et al., 2019, "Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design," [arXiv] [code]
  • MAF
    • Papamakarios et al., 2017, “Masked Autoregressive Flow for Density Estimation,” [arXiv]
  • Residual Flow
    • Behrmann et al., 2018, "Residual Flows for Invertible Generative Modeling," [arXiv] [code]
  • FFJORD
    • Grathwohl et al., 2018, "FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models," [arXiv] [code]

Note: This repository is for easier understanding of the above networks. Therefore, you should use official source cods if provided.

Setup

Anaconda

By Anaconda, you can easily setup the environment using environment.yml.

$ conda env create -f environment.yml

Pip

If you use pip or other tools, see the dependencies in environment.yml

Run

This repo uses hydra to manage hyper parameters in training and evaluation. See configs folder to check the parameters for each network.

$ python main.py \
    network=[planar, realnvp, glow, flow++, maf, resflow, ffjord]\
    run.distrib=[circles, moons, normals, swiss, s_curve, mnist, cifar10]

Note: Currently, I tested the networks only for 2D density transformation. So, results for 3D densities (swiss and s_curve) and images (mnist and cifar10) could be what you expect.

Results

See results/README.md for more results.

Real NVP

Target Reproduced Training

Copyright

MIT License (c) 2020, Tatsuya Yatagawa

Owner
Tatsuya Yatagawa
Tatsuya Yatagawa
On the Variance of the Adaptive Learning Rate and Beyond

RAdam On the Variance of the Adaptive Learning Rate and Beyond We are in an early-release beta. Expect some adventures and rough edges. Table of Conte

Liyuan Liu 2.5k Dec 27, 2022
lookahead optimizer (Lookahead Optimizer: k steps forward, 1 step back) for pytorch

lookahead optimizer for pytorch PyTorch implement of Lookahead Optimizer: k steps forward, 1 step back Usage: base_opt = torch.optim.Adam(model.parame

Liam 318 Dec 09, 2022
This is an differentiable pytorch implementation of SIFT patch descriptor.

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
Tez is a super-simple and lightweight Trainer for PyTorch. It also comes with many utils that you can use to tackle over 90% of deep learning projects in PyTorch.

Tez: a simple pytorch trainer NOTE: Currently, we are not accepting any pull requests! All PRs will be closed. If you want a feature or something does

abhishek thakur 1.1k Jan 04, 2023
An optimizer that trains as fast as Adam and as good as SGD.

AdaBound An optimizer that trains as fast as Adam and as good as SGD, for developing state-of-the-art deep learning models on a wide variety of popula

LoLo 2.9k Dec 27, 2022
S3-plugin is a high performance PyTorch dataset library to efficiently access datasets stored in S3 buckets.

S3-plugin is a high performance PyTorch dataset library to efficiently access datasets stored in S3 buckets.

Amazon Web Services 138 Jan 03, 2023
A code copied from google-research which named motion-imitation was rewrited with PyTorch

motor-system Introduction A code copied from google-research which named motion-imitation was rewrited with PyTorch. More details can get from this pr

NewEra 6 Jan 08, 2022
Riemannian Adaptive Optimization Methods with pytorch optim

geoopt Manifold aware pytorch.optim. Unofficial implementation for “Riemannian Adaptive Optimization Methods” ICLR2019 and more. Installation Make sur

642 Jan 03, 2023
3D-RETR: End-to-End Single and Multi-View3D Reconstruction with Transformers

3D-RETR: End-to-End Single and Multi-View 3D Reconstruction with Transformers (BMVC 2021) Zai Shi*, Zhao Meng*, Yiran Xing, Yunpu Ma, Roger Wattenhofe

Zai Shi 36 Dec 21, 2022
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
PyTorch to TensorFlow Lite converter

PyTorch to TensorFlow Lite converter

Omer Ferhat Sarioglu 140 Dec 13, 2022
TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

1k Dec 28, 2022
Code snippets created for the PyTorch discussion board

PyTorch misc Collection of code snippets I've written for the PyTorch discussion board. All scripts were testes using the PyTorch 1.0 preview and torc

461 Dec 26, 2022
A PyTorch implementation of EfficientNet

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
Distiller is an open-source Python package for neural network compression research.

Wiki and tutorials | Documentation | Getting Started | Algorithms | Design | FAQ Distiller is an open-source Python package for neural network compres

Intel Labs 4.1k Dec 28, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Jan 07, 2023
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking"

model_based_energy_constrained_compression Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and

Haichuan Yang 16 Jun 15, 2022