PyTorch implementations of normalizing flow and its variants.

Overview

Normalizing Flows by PyTorch

Codacy Badge

PyTorch implementations of the networks for normalizing flows.

Models

Currently, following networks are implemented.

  • Planar flow
    • Rezende and Mohamed 2015, "Variational Inference with Normalizing Flows," [arXiv]
  • RealNVP
    • Dinh et al., 2016, "Density Estimation using Real NVP," [arXiv]
  • Glow
    • Kingma and Dhariwal 2018, "Glow: Generative Flow with Invertible 1x1 Convolutions," [arXiv] [code]
  • Flow++
    • Ho et al., 2019, "Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design," [arXiv] [code]
  • MAF
    • Papamakarios et al., 2017, “Masked Autoregressive Flow for Density Estimation,” [arXiv]
  • Residual Flow
    • Behrmann et al., 2018, "Residual Flows for Invertible Generative Modeling," [arXiv] [code]
  • FFJORD
    • Grathwohl et al., 2018, "FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models," [arXiv] [code]

Note: This repository is for easier understanding of the above networks. Therefore, you should use official source cods if provided.

Setup

Anaconda

By Anaconda, you can easily setup the environment using environment.yml.

$ conda env create -f environment.yml

Pip

If you use pip or other tools, see the dependencies in environment.yml

Run

This repo uses hydra to manage hyper parameters in training and evaluation. See configs folder to check the parameters for each network.

$ python main.py \
    network=[planar, realnvp, glow, flow++, maf, resflow, ffjord]\
    run.distrib=[circles, moons, normals, swiss, s_curve, mnist, cifar10]

Note: Currently, I tested the networks only for 2D density transformation. So, results for 3D densities (swiss and s_curve) and images (mnist and cifar10) could be what you expect.

Results

See results/README.md for more results.

Real NVP

Target Reproduced Training

Copyright

MIT License (c) 2020, Tatsuya Yatagawa

Owner
Tatsuya Yatagawa
Tatsuya Yatagawa
Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric

Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric

Quiver Team 221 Dec 22, 2022
PyTorch toolkit for biomedical imaging

farabio is a minimal PyTorch toolkit for out-of-the-box deep learning support in biomedical imaging. For further information, see Wikis and Docs.

San Askaruly 47 Dec 28, 2022
PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

Cong Cai 12 Dec 19, 2021
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch

Torchmeta A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch. Torchmeta contains popular meta-learning bench

Tristan Deleu 1.7k Jan 06, 2023
You like pytorch? You like micrograd? You love tinygrad! ❤️

For something in between a pytorch and a karpathy/micrograd This may not be the best deep learning framework, but it is a deep learning framework. Due

George Hotz 9.7k Jan 05, 2023
Fast Discounted Cumulative Sums in PyTorch

TODO: update this README! Fast Discounted Cumulative Sums in PyTorch This repository implements an efficient parallel algorithm for the computation of

Daniel Povey 7 Feb 17, 2022
PyTorch implementations of normalizing flow and its variants.

PyTorch implementations of normalizing flow and its variants.

Tatsuya Yatagawa 55 Dec 01, 2022
Code snippets created for the PyTorch discussion board

PyTorch misc Collection of code snippets I've written for the PyTorch discussion board. All scripts were testes using the PyTorch 1.0 preview and torc

461 Dec 26, 2022
Implementation of LambdaNetworks, a new approach to image recognition that reaches SOTA with less compute

Lambda Networks - Pytorch Implementation of λ Networks, a new approach to image recognition that reaches SOTA on ImageNet. The new method utilizes λ l

Phil Wang 1.5k Jan 07, 2023
A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

878 Dec 30, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
PyTorch implementation of TabNet paper : https://arxiv.org/pdf/1908.07442.pdf

README TabNet : Attentive Interpretable Tabular Learning This is a pyTorch implementation of Tabnet (Arik, S. O., & Pfister, T. (2019). TabNet: Attent

DreamQuark 2k Dec 27, 2022
higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.

higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization loops, of "meta" aspects of these

Facebook Research 1.5k Jan 03, 2023
PyNIF3D is an open-source PyTorch-based library for research on neural implicit functions (NIF)-based 3D geometry representation.

PyNIF3D is an open-source PyTorch-based library for research on neural implicit functions (NIF)-based 3D geometry representation. It aims to accelerate research by providing a modular design that all

Preferred Networks, Inc. 96 Nov 28, 2022
270 Dec 24, 2022
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Jan 06, 2023
PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

Henrique Morimitsu 105 Dec 16, 2022
Riemannian Adaptive Optimization Methods with pytorch optim

geoopt Manifold aware pytorch.optim. Unofficial implementation for “Riemannian Adaptive Optimization Methods” ICLR2019 and more. Installation Make sur

642 Jan 03, 2023
Use Jax functions in Pytorch with DLPack

Use Jax functions in Pytorch with DLPack

Phil Wang 106 Dec 17, 2022