PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

Overview

PyTorch framework

一个简单且完整的PyTorch的框架,提供了各种数据的加载以及简单任务的解决方案,易于扩展和迁移。

1.该框架提供了各种数据类型的加载(.wav .mat .jpg .csv .npy)方案。

2.该框架提供了简单分类任务和回归任务的解决方案,以及几个基础模型:CNN、RNN、Attention (ResNet、LSTM、Transformer-encoder)

3.该框架是一个简单且完整的框架,只保留了必要的部分并有详细的注释,方便阅读和理解。

并且解耦了各个模块,易于扩展和迁移。迁移到其他任务上只需要更改dataloader和model部分 (还有损失函数)。

用法:

训练和验证

python main.py --dataset_path ./data/audio/wav2vec/ --model_path  wav2vec --feature wav2vec --feature_dim 768 --task regression --model lstm

python main.py --dataset_path ./data/vision/AU/ --model_path  AU --feature AU --feature_dim 34 --task regression --model lstm

python main.py --dataset_path ./data/vision/vggface/ --model_path  vggface --feature vggface --feature_dim 128 --task regression --model lstm

python main.py --dataset_path ./data/vision/image/ --model_path  image --feature image  --task classification --model resnet

测试

python test.py --dataset_path ./data/audio/wav2vec/ --model_path  ./model/wav2vec_regression_1.pth --feature wav2vec --feature_dim 768 --task regression --model lstm

多卡训练

CUDA_VISIBLE_DEVICES=0,1 python main.py --dataset_path ./data/vision/image/ --model_path  image --feature image  --task classification --model resnet --parallel

CUDA_VISIBLE_DEVICE 和 parallel 搭配使用,单用 parallel 会默认使用所有卡。






如果有任何问题,欢迎联系我([email protected])

Owner
Cong Cai
Cong Cai
A code copied from google-research which named motion-imitation was rewrited with PyTorch

motor-system Introduction A code copied from google-research which named motion-imitation was rewrited with PyTorch. More details can get from this pr

NewEra 6 Jan 08, 2022
Distiller is an open-source Python package for neural network compression research.

Wiki and tutorials | Documentation | Getting Started | Algorithms | Design | FAQ Distiller is an open-source Python package for neural network compres

Intel Labs 4.1k Dec 28, 2022
higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.

higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization loops, of "meta" aspects of these

Facebook Research 1.5k Jan 03, 2023
Implementation of LambdaNetworks, a new approach to image recognition that reaches SOTA with less compute

Lambda Networks - Pytorch Implementation of λ Networks, a new approach to image recognition that reaches SOTA on ImageNet. The new method utilizes λ l

Phil Wang 1.5k Jan 07, 2023
A pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch.

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
Pytorch implementation of Distributed Proximal Policy Optimization

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 164 Jan 05, 2023
270 Dec 24, 2022
A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch

Torchmeta A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch. Torchmeta contains popular meta-learning bench

Tristan Deleu 1.7k Jan 06, 2023
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
PyTorch extensions for fast R&D prototyping and Kaggle farming

Pytorch-toolbelt A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming: What

Eugene Khvedchenya 1.3k Jan 05, 2023
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Martin Krasser 251 Dec 25, 2022
Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric

Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric

Quiver Team 221 Dec 22, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
lookahead optimizer (Lookahead Optimizer: k steps forward, 1 step back) for pytorch

lookahead optimizer for pytorch PyTorch implement of Lookahead Optimizer: k steps forward, 1 step back Usage: base_opt = torch.optim.Adam(model.parame

Liam 318 Dec 09, 2022
An optimizer that trains as fast as Adam and as good as SGD.

AdaBound An optimizer that trains as fast as Adam and as good as SGD, for developing state-of-the-art deep learning models on a wide variety of popula

LoLo 2.9k Dec 27, 2022
Tutorial for surrogate gradient learning in spiking neural networks

SpyTorch A tutorial on surrogate gradient learning in spiking neural networks Version: 0.4 This repository contains tutorial files to get you started

Friedemann Zenke 203 Nov 28, 2022
High-level batteries-included neural network training library for Pytorch

Pywick High-Level Training framework for Pytorch Pywick is a high-level Pytorch training framework that aims to get you up and running quickly with st

382 Dec 06, 2022
PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

Cong Cai 12 Dec 19, 2021
High-fidelity performance metrics for generative models in PyTorch

High-fidelity performance metrics for generative models in PyTorch

Vikram Voleti 5 Oct 24, 2021