High-fidelity performance metrics for generative models in PyTorch

Overview

High-fidelity performance metrics for generative models in PyTorch

Documentation Status TestStatus PyPiVersion PyPiDownloads Twitter Follow

This repository provides precise, efficient, and extensible implementations of the popular metrics for generative model evaluation, including:

  • Inception Score (ISC)
  • Fréchet Inception Distance (FID)
  • Kernel Inception Distance (KID)
  • Perceptual Path Length (PPL)

Precision: Unlike many other reimplementations, the values produced by torch-fidelity match reference implementations up to machine precision. This allows using torch-fidelity for reporting metrics in papers instead of scattered and slow reference implementations. Read more about precision

Efficiency: Feature sharing between different metrics saves recomputation time, and an additional caching level avoids recomputing features and statistics whenever possible. High efficiency allows using torch-fidelity in the training loop, for example at the end of every epoch. Read more about efficiency

Extensibility: Going beyond 2D image generation is easy due to high modularity and abstraction of the metrics from input data, models, and feature extractors. For example, one can swap out InceptionV3 feature extractor for a one accepting 3D scan volumes, such as used in MRI. Read more about extensibility

TLDR; fast and reliable GAN evaluation in PyTorch

Installation

pip install torch-fidelity

See also: Installing the latest GitHub code

Usage Examples with Command Line

Below are three examples of using torch-fidelity to evaluate metrics from the command line. See more examples in the documentation.

Simple

Inception Score of CIFAR-10 training split:

> fidelity --gpu 0 --isc --input1 cifar10-train

inception_score_mean: 11.23678
inception_score_std: 0.09514061

Medium

Inception Score of a directory of images stored in ~/images/:

> fidelity --gpu 0 --isc --input1 ~/images/

Pro

Efficient computation of ISC and PPL for input1, and FID and KID between a generative model stored in ~/generator.onnx and CIFAR-10 training split:

> fidelity \
  --gpu 0 \
  --isc \
  --fid \
  --kid \
  --ppl \
  --input1 ~/generator.onnx \ 
  --input1-model-z-type normal \
  --input1-model-z-size 128 \
  --input1-model-num-samples 50000 \ 
  --input2 cifar10-train 

See also: Other usage examples

Quick Start with Python API

When it comes to tracking the performance of generative models as they train, evaluating metrics after every epoch becomes prohibitively expensive due to long computation times. torch_fidelity tackles this problem by making full use of caching to avoid recomputing common features and per-metric statistics whenever possible. Computing all metrics for 50000 32x32 generated images and cifar10-train takes only 2 min 26 seconds on NVIDIA P100 GPU, compared to >10 min if using original codebases. Thus, computing metrics 20 times over the whole training cycle makes overall training time just one hour longer.

In the following example, assume unconditional image generation setting with CIFAR-10, and the generative model generator, which takes a 128-dimensional standard normal noise vector.

First, import the module:

import torch_fidelity

Add the following lines at the end of epoch evaluation:

wrapped_generator = torch_fidelity.GenerativeModelModuleWrapper(generator, 128, 'normal', 0)

metrics_dict = torch_fidelity.calculate_metrics(
    input1=wrapped_generator, 
    input2='cifar10-train', 
    cuda=True, 
    isc=True, 
    fid=True, 
    kid=True, 
    verbose=False,
)

The resulting dictionary with computed metrics can logged directly to tensorboard, wandb, or console:

print(metrics_dict)

Output:

{
    'inception_score_mean': 11.23678, 
    'inception_score_std': 0.09514061, 
    'frechet_inception_distance': 18.12198,
    'kernel_inception_distance_mean': 0.01369556, 
    'kernel_inception_distance_std': 0.001310059
}

See also: Full API reference

Example of Integration with the Training Loop

Refer to sngan_cifar10.py for a complete training example.

Evolution of fixed generator latents in the example:

Evolution of fixed generator latents

A generator checkpoint resulting from training the example can be downloaded here.

Citation

Citation is recommended to reinforce the evaluation protocol in works relying on torch-fidelity. To ensure reproducibility when citing this repository, use the following BibTeX:

@misc{obukhov2020torchfidelity,
  author={Anton Obukhov and Maximilian Seitzer and Po-Wei Wu and Semen Zhydenko and Jonathan Kyl and Elvis Yu-Jing Lin},
  year=2020,
  title={High-fidelity performance metrics for generative models in PyTorch},
  url={https://github.com/toshas/torch-fidelity},
  publisher={Zenodo},
  version={v0.3.0},
  doi={10.5281/zenodo.4957738},
  note={Version: 0.3.0, DOI: 10.5281/zenodo.4957738}
}
Owner
Vikram Voleti
PhD student at Mila, University of Montreal
Vikram Voleti
A PyTorch implementation of EfficientNet

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions

Kim Seonghyeon 433 Dec 27, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
A PyTorch implementation of L-BFGS.

PyTorch-LBFGS: A PyTorch Implementation of L-BFGS Authors: Hao-Jun Michael Shi (Northwestern University) and Dheevatsa Mudigere (Facebook) What is it?

Hao-Jun Michael Shi 478 Dec 27, 2022
A tutorial on "Bayesian Compression for Deep Learning" published at NIPS (2017).

Code release for "Bayesian Compression for Deep Learning" In "Bayesian Compression for Deep Learning" we adopt a Bayesian view for the compression of

Karen Ullrich 190 Dec 30, 2022
On the Variance of the Adaptive Learning Rate and Beyond

RAdam On the Variance of the Adaptive Learning Rate and Beyond We are in an early-release beta. Expect some adventures and rough edges. Table of Conte

Liyuan Liu 2.5k Dec 27, 2022
Differentiable ODE solvers with full GPU support and O(1)-memory backpropagation.

PyTorch Implementation of Differentiable ODE Solvers This library provides ordinary differential equation (ODE) solvers implemented in PyTorch. Backpr

Ricky Chen 4.4k Jan 04, 2023
A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

878 Dec 30, 2022
A code copied from google-research which named motion-imitation was rewrited with PyTorch

motor-system Introduction A code copied from google-research which named motion-imitation was rewrited with PyTorch. More details can get from this pr

NewEra 6 Jan 08, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
torch-optimizer -- collection of optimizers for Pytorch

torch-optimizer torch-optimizer -- collection of optimizers for PyTorch compatible with optim module. Simple example import torch_optimizer as optim

Nikolay Novik 2.6k Jan 03, 2023
ocaml-torch provides some ocaml bindings for the PyTorch tensor library.

ocaml-torch provides some ocaml bindings for the PyTorch tensor library. This brings to OCaml NumPy-like tensor computations with GPU acceleration and tape-based automatic differentiation.

Laurent Mazare 369 Jan 03, 2023
Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.

Pretrained models for Pytorch (Work in progress) The goal of this repo is: to help to reproduce research papers results (transfer learning setups for

Remi 8.7k Dec 31, 2022
PyTorch Extension Library of Optimized Scatter Operations

PyTorch Scatter Documentation This package consists of a small extension library of highly optimized sparse update (scatter and segment) operations fo

Matthias Fey 1.2k Jan 07, 2023
Use Jax functions in Pytorch with DLPack

Use Jax functions in Pytorch with DLPack

Phil Wang 106 Dec 17, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Code snippets created for the PyTorch discussion board

PyTorch misc Collection of code snippets I've written for the PyTorch discussion board. All scripts were testes using the PyTorch 1.0 preview and torc

461 Dec 26, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News March 3: v0.9.97 has various bug fixes and improvements: Bug fixes for NTXentLoss Efficiency improvement for AccuracyCalculator, by using torch i

Kevin Musgrave 5k Jan 02, 2023