High-fidelity performance metrics for generative models in PyTorch

Overview

High-fidelity performance metrics for generative models in PyTorch

Documentation Status TestStatus PyPiVersion PyPiDownloads Twitter Follow

This repository provides precise, efficient, and extensible implementations of the popular metrics for generative model evaluation, including:

  • Inception Score (ISC)
  • Fréchet Inception Distance (FID)
  • Kernel Inception Distance (KID)
  • Perceptual Path Length (PPL)

Precision: Unlike many other reimplementations, the values produced by torch-fidelity match reference implementations up to machine precision. This allows using torch-fidelity for reporting metrics in papers instead of scattered and slow reference implementations. Read more about precision

Efficiency: Feature sharing between different metrics saves recomputation time, and an additional caching level avoids recomputing features and statistics whenever possible. High efficiency allows using torch-fidelity in the training loop, for example at the end of every epoch. Read more about efficiency

Extensibility: Going beyond 2D image generation is easy due to high modularity and abstraction of the metrics from input data, models, and feature extractors. For example, one can swap out InceptionV3 feature extractor for a one accepting 3D scan volumes, such as used in MRI. Read more about extensibility

TLDR; fast and reliable GAN evaluation in PyTorch

Installation

pip install torch-fidelity

See also: Installing the latest GitHub code

Usage Examples with Command Line

Below are three examples of using torch-fidelity to evaluate metrics from the command line. See more examples in the documentation.

Simple

Inception Score of CIFAR-10 training split:

> fidelity --gpu 0 --isc --input1 cifar10-train

inception_score_mean: 11.23678
inception_score_std: 0.09514061

Medium

Inception Score of a directory of images stored in ~/images/:

> fidelity --gpu 0 --isc --input1 ~/images/

Pro

Efficient computation of ISC and PPL for input1, and FID and KID between a generative model stored in ~/generator.onnx and CIFAR-10 training split:

> fidelity \
  --gpu 0 \
  --isc \
  --fid \
  --kid \
  --ppl \
  --input1 ~/generator.onnx \ 
  --input1-model-z-type normal \
  --input1-model-z-size 128 \
  --input1-model-num-samples 50000 \ 
  --input2 cifar10-train 

See also: Other usage examples

Quick Start with Python API

When it comes to tracking the performance of generative models as they train, evaluating metrics after every epoch becomes prohibitively expensive due to long computation times. torch_fidelity tackles this problem by making full use of caching to avoid recomputing common features and per-metric statistics whenever possible. Computing all metrics for 50000 32x32 generated images and cifar10-train takes only 2 min 26 seconds on NVIDIA P100 GPU, compared to >10 min if using original codebases. Thus, computing metrics 20 times over the whole training cycle makes overall training time just one hour longer.

In the following example, assume unconditional image generation setting with CIFAR-10, and the generative model generator, which takes a 128-dimensional standard normal noise vector.

First, import the module:

import torch_fidelity

Add the following lines at the end of epoch evaluation:

wrapped_generator = torch_fidelity.GenerativeModelModuleWrapper(generator, 128, 'normal', 0)

metrics_dict = torch_fidelity.calculate_metrics(
    input1=wrapped_generator, 
    input2='cifar10-train', 
    cuda=True, 
    isc=True, 
    fid=True, 
    kid=True, 
    verbose=False,
)

The resulting dictionary with computed metrics can logged directly to tensorboard, wandb, or console:

print(metrics_dict)

Output:

{
    'inception_score_mean': 11.23678, 
    'inception_score_std': 0.09514061, 
    'frechet_inception_distance': 18.12198,
    'kernel_inception_distance_mean': 0.01369556, 
    'kernel_inception_distance_std': 0.001310059
}

See also: Full API reference

Example of Integration with the Training Loop

Refer to sngan_cifar10.py for a complete training example.

Evolution of fixed generator latents in the example:

Evolution of fixed generator latents

A generator checkpoint resulting from training the example can be downloaded here.

Citation

Citation is recommended to reinforce the evaluation protocol in works relying on torch-fidelity. To ensure reproducibility when citing this repository, use the following BibTeX:

@misc{obukhov2020torchfidelity,
  author={Anton Obukhov and Maximilian Seitzer and Po-Wei Wu and Semen Zhydenko and Jonathan Kyl and Elvis Yu-Jing Lin},
  year=2020,
  title={High-fidelity performance metrics for generative models in PyTorch},
  url={https://github.com/toshas/torch-fidelity},
  publisher={Zenodo},
  version={v0.3.0},
  doi={10.5281/zenodo.4957738},
  note={Version: 0.3.0, DOI: 10.5281/zenodo.4957738}
}
Owner
Vikram Voleti
PhD student at Mila, University of Montreal
Vikram Voleti
Tutorial for surrogate gradient learning in spiking neural networks

SpyTorch A tutorial on surrogate gradient learning in spiking neural networks Version: 0.4 This repository contains tutorial files to get you started

Friedemann Zenke 203 Nov 28, 2022
A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

A lightweight wrapper for PyTorch that provides a simple declarative API for context switching between devices, distributed modes, mixed-precision, and PyTorch extensions.

Fidelity Investments 56 Sep 13, 2022
A PyTorch implementation of L-BFGS.

PyTorch-LBFGS: A PyTorch Implementation of L-BFGS Authors: Hao-Jun Michael Shi (Northwestern University) and Dheevatsa Mudigere (Facebook) What is it?

Hao-Jun Michael Shi 478 Dec 27, 2022
A very simple and small path tracer written in pytorch meant to be run on the GPU

MentisOculi Pytorch Path Tracer A very simple and small path tracer written in pytorch meant to be run on the GPU Why use pytorch and not some other c

Matthew B. Mirman 222 Dec 01, 2022
PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

Henrique Morimitsu 105 Dec 16, 2022
Training RNNs as Fast as CNNs (https://arxiv.org/abs/1709.02755)

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
Pytorch implementation of Distributed Proximal Policy Optimization

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 164 Jan 05, 2023
Bunch of optimizer implementations in PyTorch

Bunch of optimizer implementations in PyTorch

Hyeongchan Kim 76 Jan 03, 2023
PyTorch toolkit for biomedical imaging

farabio is a minimal PyTorch toolkit for out-of-the-box deep learning support in biomedical imaging. For further information, see Wikis and Docs.

San Askaruly 47 Dec 28, 2022
High-fidelity performance metrics for generative models in PyTorch

High-fidelity performance metrics for generative models in PyTorch

Vikram Voleti 5 Oct 24, 2021
Pretrained EfficientNet, EfficientNet-Lite, MixNet, MobileNetV3 / V2, MNASNet A1 and B1, FBNet, Single-Path NAS

(Generic) EfficientNets for PyTorch A 'generic' implementation of EfficientNet, MixNet, MobileNetV3, etc. that covers most of the compute/parameter ef

Ross Wightman 1.5k Jan 01, 2023
A tiny package to compare two neural networks in PyTorch

Compare neural networks by their feature similarity

Anand Krishnamoorthy 180 Dec 30, 2022
A simple way to train and use PyTorch models with multi-GPU, TPU, mixed-precision

🤗 Accelerate was created for PyTorch users who like to write the training loop of PyTorch models but are reluctant to write and maintain the boilerplate code needed to use multi-GPUs/TPU/fp16.

Hugging Face 3.5k Jan 08, 2023
Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric

Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric

Quiver Team 221 Dec 22, 2022
PyTorch to TensorFlow Lite converter

PyTorch to TensorFlow Lite converter

Omer Ferhat Sarioglu 140 Dec 13, 2022
3D-RETR: End-to-End Single and Multi-View3D Reconstruction with Transformers

3D-RETR: End-to-End Single and Multi-View 3D Reconstruction with Transformers (BMVC 2021) Zai Shi*, Zhao Meng*, Yiran Xing, Yunpu Ma, Roger Wattenhofe

Zai Shi 36 Dec 21, 2022
torch-optimizer -- collection of optimizers for Pytorch

torch-optimizer torch-optimizer -- collection of optimizers for PyTorch compatible with optim module. Simple example import torch_optimizer as optim

Nikolay Novik 2.6k Jan 03, 2023
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API

micrograd A tiny Autograd engine (with a bite! :)). Implements backpropagation (reverse-mode autodiff) over a dynamically built DAG and a small neural

Andrej 3.5k Jan 08, 2023
ocaml-torch provides some ocaml bindings for the PyTorch tensor library.

ocaml-torch provides some ocaml bindings for the PyTorch tensor library. This brings to OCaml NumPy-like tensor computations with GPU acceleration and tape-based automatic differentiation.

Laurent Mazare 369 Jan 03, 2023