High-fidelity performance metrics for generative models in PyTorch

Overview

High-fidelity performance metrics for generative models in PyTorch

Documentation Status TestStatus PyPiVersion PyPiDownloads Twitter Follow

This repository provides precise, efficient, and extensible implementations of the popular metrics for generative model evaluation, including:

  • Inception Score (ISC)
  • Fréchet Inception Distance (FID)
  • Kernel Inception Distance (KID)
  • Perceptual Path Length (PPL)

Precision: Unlike many other reimplementations, the values produced by torch-fidelity match reference implementations up to machine precision. This allows using torch-fidelity for reporting metrics in papers instead of scattered and slow reference implementations. Read more about precision

Efficiency: Feature sharing between different metrics saves recomputation time, and an additional caching level avoids recomputing features and statistics whenever possible. High efficiency allows using torch-fidelity in the training loop, for example at the end of every epoch. Read more about efficiency

Extensibility: Going beyond 2D image generation is easy due to high modularity and abstraction of the metrics from input data, models, and feature extractors. For example, one can swap out InceptionV3 feature extractor for a one accepting 3D scan volumes, such as used in MRI. Read more about extensibility

TLDR; fast and reliable GAN evaluation in PyTorch

Installation

pip install torch-fidelity

See also: Installing the latest GitHub code

Usage Examples with Command Line

Below are three examples of using torch-fidelity to evaluate metrics from the command line. See more examples in the documentation.

Simple

Inception Score of CIFAR-10 training split:

> fidelity --gpu 0 --isc --input1 cifar10-train

inception_score_mean: 11.23678
inception_score_std: 0.09514061

Medium

Inception Score of a directory of images stored in ~/images/:

> fidelity --gpu 0 --isc --input1 ~/images/

Pro

Efficient computation of ISC and PPL for input1, and FID and KID between a generative model stored in ~/generator.onnx and CIFAR-10 training split:

> fidelity \
  --gpu 0 \
  --isc \
  --fid \
  --kid \
  --ppl \
  --input1 ~/generator.onnx \ 
  --input1-model-z-type normal \
  --input1-model-z-size 128 \
  --input1-model-num-samples 50000 \ 
  --input2 cifar10-train 

See also: Other usage examples

Quick Start with Python API

When it comes to tracking the performance of generative models as they train, evaluating metrics after every epoch becomes prohibitively expensive due to long computation times. torch_fidelity tackles this problem by making full use of caching to avoid recomputing common features and per-metric statistics whenever possible. Computing all metrics for 50000 32x32 generated images and cifar10-train takes only 2 min 26 seconds on NVIDIA P100 GPU, compared to >10 min if using original codebases. Thus, computing metrics 20 times over the whole training cycle makes overall training time just one hour longer.

In the following example, assume unconditional image generation setting with CIFAR-10, and the generative model generator, which takes a 128-dimensional standard normal noise vector.

First, import the module:

import torch_fidelity

Add the following lines at the end of epoch evaluation:

wrapped_generator = torch_fidelity.GenerativeModelModuleWrapper(generator, 128, 'normal', 0)

metrics_dict = torch_fidelity.calculate_metrics(
    input1=wrapped_generator, 
    input2='cifar10-train', 
    cuda=True, 
    isc=True, 
    fid=True, 
    kid=True, 
    verbose=False,
)

The resulting dictionary with computed metrics can logged directly to tensorboard, wandb, or console:

print(metrics_dict)

Output:

{
    'inception_score_mean': 11.23678, 
    'inception_score_std': 0.09514061, 
    'frechet_inception_distance': 18.12198,
    'kernel_inception_distance_mean': 0.01369556, 
    'kernel_inception_distance_std': 0.001310059
}

See also: Full API reference

Example of Integration with the Training Loop

Refer to sngan_cifar10.py for a complete training example.

Evolution of fixed generator latents in the example:

Evolution of fixed generator latents

A generator checkpoint resulting from training the example can be downloaded here.

Citation

Citation is recommended to reinforce the evaluation protocol in works relying on torch-fidelity. To ensure reproducibility when citing this repository, use the following BibTeX:

@misc{obukhov2020torchfidelity,
  author={Anton Obukhov and Maximilian Seitzer and Po-Wei Wu and Semen Zhydenko and Jonathan Kyl and Elvis Yu-Jing Lin},
  year=2020,
  title={High-fidelity performance metrics for generative models in PyTorch},
  url={https://github.com/toshas/torch-fidelity},
  publisher={Zenodo},
  version={v0.3.0},
  doi={10.5281/zenodo.4957738},
  note={Version: 0.3.0, DOI: 10.5281/zenodo.4957738}
}
Owner
Vikram Voleti
PhD student at Mila, University of Montreal
Vikram Voleti
PyTorch implementations of normalizing flow and its variants.

PyTorch implementations of normalizing flow and its variants.

Tatsuya Yatagawa 55 Dec 01, 2022
Riemannian Adaptive Optimization Methods with pytorch optim

geoopt Manifold aware pytorch.optim. Unofficial implementation for “Riemannian Adaptive Optimization Methods” ICLR2019 and more. Installation Make sur

642 Jan 03, 2023
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Implementation of LambdaNetworks, a new approach to image recognition that reaches SOTA with less compute

Lambda Networks - Pytorch Implementation of λ Networks, a new approach to image recognition that reaches SOTA on ImageNet. The new method utilizes λ l

Phil Wang 1.5k Jan 07, 2023
Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Fangjun Kuang 119 Jan 03, 2023
A very simple and small path tracer written in pytorch meant to be run on the GPU

MentisOculi Pytorch Path Tracer A very simple and small path tracer written in pytorch meant to be run on the GPU Why use pytorch and not some other c

Matthew B. Mirman 222 Dec 01, 2022
pip install antialiased-cnns to improve stability and accuracy

Antialiased CNNs [Project Page] [Paper] [Talk] Making Convolutional Networks Shift-Invariant Again Richard Zhang. In ICML, 2019. Quick & easy start Ru

Adobe, Inc. 1.6k Dec 28, 2022
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.

PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie

Google Research 1.2k Jan 04, 2023
You like pytorch? You like micrograd? You love tinygrad! ❤️

For something in between a pytorch and a karpathy/micrograd This may not be the best deep learning framework, but it is a deep learning framework. Due

George Hotz 9.7k Jan 05, 2023
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Jan 07, 2023
Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.

Pretrained models for Pytorch (Work in progress) The goal of this repo is: to help to reproduce research papers results (transfer learning setups for

Remi 8.7k Dec 31, 2022
270 Dec 24, 2022
A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API

micrograd A tiny Autograd engine (with a bite! :)). Implements backpropagation (reverse-mode autodiff) over a dynamically built DAG and a small neural

Andrej 3.5k Jan 08, 2023
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
A tiny package to compare two neural networks in PyTorch

Compare neural networks by their feature similarity

Anand Krishnamoorthy 180 Dec 30, 2022
PyNIF3D is an open-source PyTorch-based library for research on neural implicit functions (NIF)-based 3D geometry representation.

PyNIF3D is an open-source PyTorch-based library for research on neural implicit functions (NIF)-based 3D geometry representation. It aims to accelerate research by providing a modular design that all

Preferred Networks, Inc. 96 Nov 28, 2022
A code copied from google-research which named motion-imitation was rewrited with PyTorch

motor-system Introduction A code copied from google-research which named motion-imitation was rewrited with PyTorch. More details can get from this pr

NewEra 6 Jan 08, 2022
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Jan 06, 2023