PyTorch toolkit for biomedical imaging

Overview

logo

🤖 farabio ❤️

PyPI version DOI PyPI - Downloads Documentation Status GitHub commit activity GitHub

🎉 What's New

August 26, 2021

Publishing farabio==0.0.3 (latest version):
PyPI | Release notes

August 18, 2021

Publishing farabio==0.0.2:
PyPI | Release notes

April 21, 2021

This work is presented at PyTorch Ecosystem day. Poster is here.

April 2, 2021

Publishing farabio==0.0.1:
PyPI | Release notes

March 3, 2021

This work is selected for PyTorch Ecosystem Day.

💡 Introduction

farabio is a minimal PyTorch toolkit for out-of-the-box deep learning support in biomedical imaging. For further information, see Wikis and Docs.

🔥 Features

  • Biomedical datasets
  • Common DL models
  • Flexible trainers (*in progress)

📚 Biodatasets

🚢 Models

Classification:

Segmentation:

🚀 Getting started (Installation)

1. Create and activate conda environment:

conda create -n myenv python=3.8
conda activate myenv

2. Install PyTorch:

pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

3. Install farabio:

A. With pip:

pip install farabio

B. Setup from source:

git clone https://github.com/tuttelikz/farabio.git && cd farabio
pip install .

🤿 Tutorials

Tutorial 1: Training a classifier for ChestXrayDataset - Notebook
Tutorial 2: Training a segmentation model for DSB18Dataset - Notebook
Tutorial 3: Training a Faster-RCNN detection model for VinBigDataset - Notebook

🔎 Links

Credits

If you like this repository, please click on Star.

How to cite | doi:

@software{sanzhar_askaruly_2021_5746474,
  author       = {Sanzhar Askaruly and
                  Nurbolat Aimakov and
                  Alisher Iskakov and
                  Hyewon Cho and
                  Yujin Ahn and
                  Myeong Hoon Choi and
                  Hyunmo Yang and
                  Woonggyu Jung},
  title        = {Farabio: Deep learning for biomedical imaging},
  month        = dec,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v0.0.3-doi},
  doi          = {10.5281/zenodo.5746474},
  url          = {https://doi.org/10.5281/zenodo.5746474}
}

📃 Licenses

This work is licensed Apache 2.0.

🤩 Acknowledgements

This work is based upon efforts of open-source PyTorch Community. I have tried to acknowledge related works (github links, arxiv papers) inside the source material, eg. README, documentation, and code docstrings. Please contact if I missed anything.

You might also like...
PyTorch Extension Library of Optimized Scatter Operations

PyTorch Scatter Documentation This package consists of a small extension library of highly optimized sparse update (scatter and segment) operations fo

PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations

PyTorch Sparse This package consists of a small extension library of optimized sparse matrix operations with autograd support. This package currently

Reformer, the efficient Transformer, in Pytorch
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.
higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.

higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization loops, of "meta" aspects of these

PyTorch implementation of TabNet paper : https://arxiv.org/pdf/1908.07442.pdf

README TabNet : Attentive Interpretable Tabular Learning This is a pyTorch implementation of Tabnet (Arik, S. O., & Pfister, T. (2019). TabNet: Attent

PyTorch extensions for fast R&D prototyping and Kaggle farming

Pytorch-toolbelt A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming: What

An implementation of Performer, a linear attention-based transformer, in Pytorch
An implementation of Performer, a linear attention-based transformer, in Pytorch

Performer - Pytorch An implementation of Performer, a linear attention-based transformer variant with a Fast Attention Via positive Orthogonal Random

The goal of this library is to generate more helpful exception messages for numpy/pytorch matrix algebra expressions.
The goal of this library is to generate more helpful exception messages for numpy/pytorch matrix algebra expressions.

Tensor Sensor See article Clarifying exceptions and visualizing tensor operations in deep learning code. One of the biggest challenges when writing co

You like pytorch? You like micrograd? You love tinygrad! ❤️
You like pytorch? You like micrograd? You love tinygrad! ❤️

For something in between a pytorch and a karpathy/micrograd This may not be the best deep learning framework, but it is a deep learning framework. Due

Comments
  • invalid input type

    invalid input type

    Instructions To Reproduce the Bug

    1. What exact command you run:
    If making changes to the project itself, please use output of the following command:
    git rev-parse HEAD; git diff
    
    <put code or diff here>
    
    1. Full logs or other relevant observations:
    <put logs here>
    
    1. please simplify the steps as much as possible so they do not require additional resources to run, such as a private dataset.

    Expected behavior:

    If there are no obvious error in "what you observed" provided above, please tell us the expected behavior.

    Environment:

    Provide your environment information using the following command:

    git clone https://gist.github.com/tuttelikz/ebd5ab3ffb29cb9399f2596b8f163a4e a && python a/cenv.py
    
    opened by aminemosbah 3
Releases(v0.0.3-doi)
  • v0.0.3-doi(Dec 1, 2021)

  • v0.0.3(Aug 25, 2021)

  • v0.0.2(Aug 17, 2021)

    TLDR: This is a fresh, restructured release package compared to v0.0.1. Here, we ship several classification models and biodatasets in PyTorch friendly format.

    Models:

    • AlexNet
    • GoogLeNet
    • MobileNetV2
    • MobileNetV3
    • ResNet
    • ShuffleNetV2
    • SqueezeNet
    • VGG

    Biodatasets:

    • ChestXrayDataset
    • DSB18Dataset
    • HistocancerDataset
    • RANZCRDataset
    • RetinopathyDataset
    Source code(tar.gz)
    Source code(zip)
    farabio-0.0.2-py3-none-any.whl(32.98 KB)
  • v0.0.1(Aug 25, 2021)

    TLDR: This is the very first release. In this release, we ship various baseline models for classification, segmentation, detection, super-resolution and image translation tasks. As well, basis for model trainers and biodatasets are described here. Architectures are not as clean. Please refer to new releases in the future.

    Biodatasets:

    • ChestXrayDataset
    • DSB18Dataset
    • HistocancerDataset
    • RANZCRDataset
    • RetinopathyDataset

    Trainers:

    • BaseTrainer
    • ConvnetTrainer
    • GanTrainer

    Models:

    • DenseNet
    • GoogLeNet
    • VGG
    • ResNet
    • MobileNetV2
    • ShuffleNetV2
    • ViT
    • U-Net
    • Attention U-Net
    • FasterRCNN
    • YOLOv3
    • CycleGAN
    • SRGAN
    Source code(tar.gz)
    Source code(zip)
    farabio-0.0.1-py3-none-any.whl(100.73 KB)
Owner
San Askaruly
Willing to join fast-paced team to build amazing future!
San Askaruly
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.

PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie

Google Research 1.2k Jan 04, 2023
Pytorch implementation of Distributed Proximal Policy Optimization

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 164 Jan 05, 2023
S3-plugin is a high performance PyTorch dataset library to efficiently access datasets stored in S3 buckets.

S3-plugin is a high performance PyTorch dataset library to efficiently access datasets stored in S3 buckets.

Amazon Web Services 138 Jan 03, 2023
You like pytorch? You like micrograd? You love tinygrad! ❤️

For something in between a pytorch and a karpathy/micrograd This may not be the best deep learning framework, but it is a deep learning framework. Due

George Hotz 9.7k Jan 05, 2023
Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking"

model_based_energy_constrained_compression Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and

Haichuan Yang 16 Jun 15, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Code snippets created for the PyTorch discussion board

PyTorch misc Collection of code snippets I've written for the PyTorch discussion board. All scripts were testes using the PyTorch 1.0 preview and torc

461 Dec 26, 2022
PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions

Kim Seonghyeon 433 Dec 27, 2022
Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Martin Krasser 251 Dec 25, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL components from published papers, standardized evaluation, and experiment management.

GCL: Graph Contrastive Learning Library for PyTorch 592 Jan 07, 2023
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
A tiny package to compare two neural networks in PyTorch

Compare neural networks by their feature similarity

Anand Krishnamoorthy 180 Dec 30, 2022
A very simple and small path tracer written in pytorch meant to be run on the GPU

MentisOculi Pytorch Path Tracer A very simple and small path tracer written in pytorch meant to be run on the GPU Why use pytorch and not some other c

Matthew B. Mirman 222 Dec 01, 2022
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
Model summary in PyTorch similar to `model.summary()` in Keras

Keras style model.summary() in PyTorch Keras has a neat API to view the visualization of the model which is very helpful while debugging your network.

Shubham Chandel 3.7k Dec 29, 2022
Learning Sparse Neural Networks through L0 regularization

Example implementation of the L0 regularization method described at Learning Sparse Neural Networks through L0 regularization, Christos Louizos, Max W

AMLAB 202 Nov 10, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.

Pretrained models for Pytorch (Work in progress) The goal of this repo is: to help to reproduce research papers results (transfer learning setups for

Remi 8.7k Dec 31, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
PyTorch wrappers for using your model in audacity!

PyTorch wrappers for using your model in audacity!

130 Dec 14, 2022